

VERSORGUNGSSYSTEME FÜR GLEITRINGDICHTUNGEN

TASCHENFÜHRER - 4. AUSGABE

EINZEL-DICHTHINGEN

QUENCHDICHTUNG

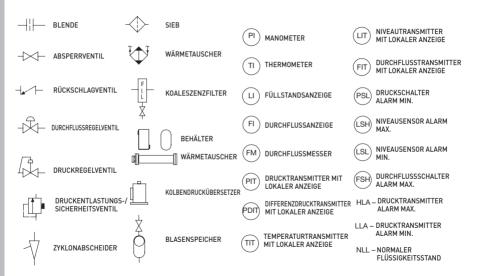
SICHERHEITSDICHTUNGEN (HILFSDICHTUNGEN)

GASGESPERRTE DOPPELDICHTUNGEN NÜTZLICHE INFORMATIONEN

SPÜLPLAN

SPÜLPLAN

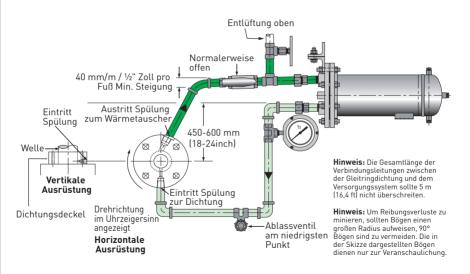
Plan 53C	Doppeldichtungen, druckbeaufschlagt – Sperrflüssigkeit über Wärmetauscher, der Druckaufbau erfolgt durch einen Kolbendruckübersetzer
Plan 54	Doppeldichtungen, druckbeaufschlagt – externes Sperrdruckaggregat
Plan 55	Doppeldichtungen, drucklos – externes, druckloses Versorgungssystem
Plan 61	Quenchdichtungen – Quenchanschluss an der Gleitringdichtung vorhanden und mit Stopfen verschlossen
Plan 62	Quenchdichtungen – externer Quench auf der Atmosphärenseite der Dichtung
Plan 65A	3
	Leckageüberwachung, Alarm bei übermäßiger Leckage
Plan 65B	Einzeldichtungen – Sammel- und Überwachungssystem für kondensierte Leckage auf der Atmosphärenseite
	Leckageüberwachung, kumulative Messung der Leckage möglich
Plan 66A	Einzeldichtungen – externe Leckage durch einen Drucktransmitter und Drosselbuchsen in der Gleitringdichtung
Plan 66B	Einzeldichtungen – externe Leckageüberwachung durch Blende mit Stopfen
Plan 71	Sicherheitsdichtungen – Anschluss an der Gleitringdichtung vorhanden und mit Stopfen verschlossen
Plan 72	Sicherheitsdichtungen – Gasvorlage wird mit niedrigem Druck zwischen die innere und äußere Gleitringdichtung
	zugeführt
Plan 74	Gasgeschmierte Doppeldichtungen - druckbeaufschlagtes Gas als Sperrsystem für gasgeschmierte Dopppeldichtungen
Plan 75	Sicherheitsdichtungen – Sammelsystem für flüssige oder kondensierte Prozessleckagen
Plan 76	· · · · · · · · · · · · · · · · · · ·
	Sicherheitsdichtungen – gasförmige Leckage wird zu einer Fackelleitung oder einem Sammelbehälter abgeleitet
Plan 99	$Einzel dichtungen, Doppel dichtungen, Quenchdichtungen, Sicherheits dichtungen \ und \ gasgeschmierte \ Doppel dichtungen \ -$
	kundenspezifischer Plan, der nicht durch bestehende Pläne definiert ist

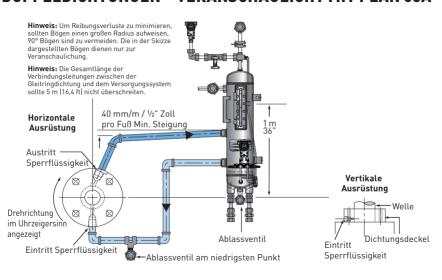

EINLEITUNG

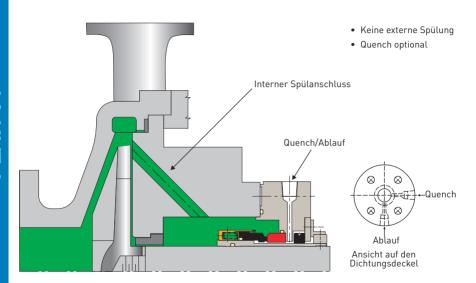
Entscheidend für den effizienten und zuverlässigen Betrieb von Gleitringdichtungen ist die Schaffung von optimalen Umgebungsbedingungen. Die Auswahl des passenden Versorgungssystems und des entsprechenden Zubehörs hängt von Einsatzdaten, Bauart und Fahrweise der Gleitringdichtung ab, dem Medium, in welchem sie betrieben wird und der Art der Maschine, in welcher sie eingesetzt wird. Wichtige Faktoren sind die kontrollierte Schmierung und Kühlung der Gleitflächen, eine effiziente Wärmeabfuhr, die Gewährleistung der Sicherheit für Personal und Umwelt, das Leckagemanagement und die Kostenkontrolle. Die API hat standardisierte Spülpläne für Gleitringdichtungen festgelegt, die Industrierichtlinien für verschiedene Dichtungsanordnungen, Medien und Überwachungseinrichtungen enthalten. Die enthaltenen Abbildungen beziehen sich auf die API 682.

Auf den folgenden Seiten sind die einzelnen Spülpläne illustriert und beschrieben, um die Auswahl des passenden Versorgungssystems für den effizienten und zuverlässigen Betrieb Ihrer Maschine zu vereinfachen.

Die API 682 verwendet Anschlüsse und Symbole für die Dichtungskammer und den Enddeckel, die auf der Dichtungskonfiguration basieren. Wir empfehlen, die neueste Ausgabe der API auf aktuelle Anforderungen zu überprüfen, wenn diese Norm für Rotating Equipment vorgeschrieben ist. Dieser Taschenführer veranschaulicht übliche Anschlüsse, die für die verschiedenen Verrohrungspläne verwendet werden, unabhängig vom Gerätetyp. Aus diesem Grund wurden allgemeine Bezeichnungen gewählt. Endkunden und/oder OEMs haben oftmals spezifische Anforderungen, die vorgeben, wie die Anschlüsse angebracht und wie sie bezeichnet werden. Der im Verrohrungsplan mit "Spülung" bezeichnete Anschluss für die innenliegende Dichtung einer Doppeldichtung kann aus unterschiedlichen Quellen erfolgen. Die "Spülung" bei Plan 11/75 oder 32/75 kann beispielsweise durch das Medium (Plan 11) oder eine externe Flüssigkeit (Plan 32) erfolgen.

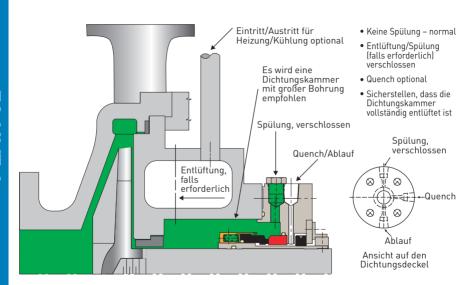

LEGENDE


KRITERIEN ZUR BESTMÖGLICHEN VERROHRUNG


- Minimieren Sie Rohrleitungsverluste.
- ✓ Vermeiden Sie enge Biegeradien.
- Verwenden Sie tangentiale Auslassanschlüsse an der Gleitringdichtung.
- ☑ Überprüfen Sie die Wellendrehrichtung.
- ☑ Die horizontalen Leitungen müssen mit einer Neigung von 40 mm/m (1/2 in/ft) nach oben verlaufen
- Installieren Sie den Ablauf am tiefsten Punkt der Verrohrung.
- Spülen Sie so oft wie möglich.
- ✓ Nutzen Sie, wenn möglich, die Zwangszirkulation.
- ✓ Die Sperr-/Vorlageflüssigkeit sollte gekühlt werden.
- ☑ Entlüften Sie das System vor dem Start immer ordnungsgemäß.
- Überprüfen Sie stets die Sollwerte für Druck- und/oder Niveauschalter.
- Überprüfen Sie das System auf Leckagen.
- ☑ Prüfen Sie die Kompatibilität der Vorlage-/Sperrflüssigkeit mit dem Endprodukt.
- Um Reibungsverluste zu minimieren, sollten Biegungen einen großen Radius aufweisen, 90° Bögen sind zu vermeiden.
- Die in den Skizzen dargestellten Bögen dienen nur zur Veranschaulichung.
- ✓ Verwenden Sie für die Verrohrung von Spülplänen, bei welchen der Durchfluss durch eine interne Umwälzvorrichtung (Pumpring oder Fördergewinde) erzeugt wird, Rohre mit einem Durchmesser von mindestens 20 mm (¾")
- Verwenden Sie für die Verrohrung von Spülplänen, bei welchen der Durchfluss durch eine externe Umwälzeinheit erzeugt wird, Rohre mit einem Durchmesser von mindestens 12 mm (1/2")

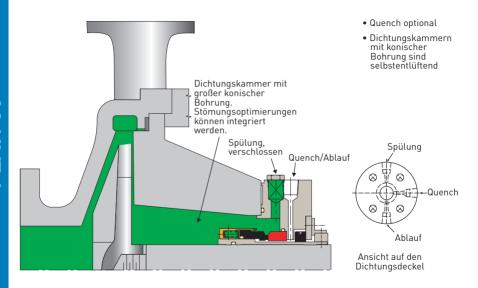
EINZELDICHTUNGEN - VERANSCHAULICHT MIT PLAN 23

DOPPELDICHTUNGEN - VERANSCHAULICHT MIT PLAN 53A



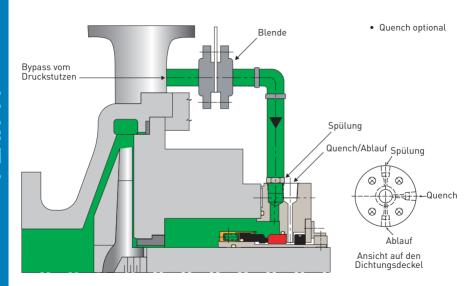
Beschreibung: Plan 01 ist eine interne Zirkulation vom Druckstutzen der Pumpe zur Dichtungskammer, ähnlich Plan 11, jedoch ohne freiliegende Rohrleitungen.

Vorteile: Keine Prozessverunreinigung, keine externen Rohrleitungen, deshalb geeignet für hochviskose Medien bei niedrigen Temperaturen, geringeres Risiko des Gefrierens, als bei freiliegenden Rohrleitungen.


Allgemeines: Dieser Spülplan sollte nur für saubere Medien verwendet werden, da feststoffhaltige Medien die interne Leitung verstopfen können. Nicht empfohlen für vertikale Pumpen.

Beschreibung: Plan 02 ist ein nicht zirkulierender Spülplan, bei dem die Dichtungskammer mit Dampf beheizt oder mit Wasser gekühlt wird. Der Dampfdruck muss einen ausreichenden Abstand zum Siedepunkt der Flüssigkeit aufweisen, um Verdampfung zu vermeiden.

Vorteile: Feststoffe werden nicht kontinuierlich in die Dichtungskammer eingeführt, es ist keine externe Hardware erforderlich.


Allgemeines: Wird häufig für Pumpen mit großen Dichtungskammern und Kühlmantel für Hochtemperaturanwendungen eingesetzt. Plan 62 mit Dampfquench kann bei Hochtemperaturanwendungen für zusätzliche Kühlung sorgen. Der Erfolg bei heißen Anwendungen hängt davon ab, ob der Kühlmantel sauber bleibt. Bei verschmutztem Kühlwasser kann der Kühlmantel zuwachsen.

Beschreibung: Bei Plan 03 erfolgt die Zirkulation durch einen offenen Stoffbuchsraum.

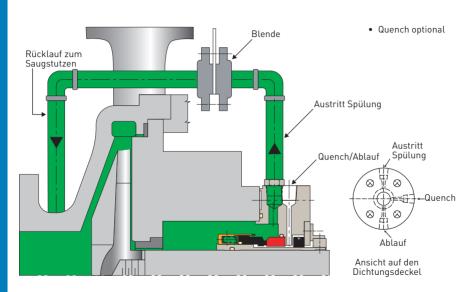
Vorteile: Die Zirkulation zur Kühlung der Gleitringdichtung und das Entlüften des Stoffbuchsraums wird durch die Geometrie des Stoffbuchsraums erreicht.


Allgemeines: Wird häufig bei ASME/ANSI- oder speziellen ISO 3069-Stoffbuchsräumen mit konischer Bohrung und ohne Grundbuchse verwendet, für Anwendungen, bei denen die Dichtung keine nennenswerte Wärme erzeugt, oder wenn sich bei herkömmlichen Dichtungskammern Feststoffe ansammeln könnten.

Beschreibung: Plan 11 ist aktuell der gängigste Spülplan. Zirkulation vom Druckstutzen der Pumpe oder von einer Zwischenstufe durch eine Blende in die Dichtungskammer zur Kühlung und Schmierung der Gleitflächen.

Vorteile: Keine Prozessverunreinigung, einfache Verrohrung.

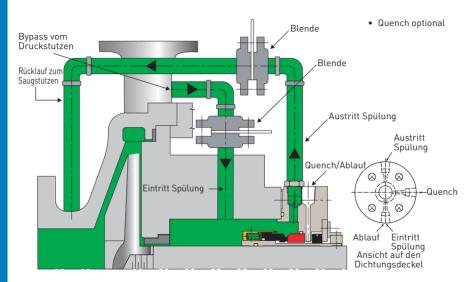
Allgemeines: Zur Verbesserung der Kühlung und Schmierung der Gleitflächen sind tangentiale Eintritte oder mehrere Spülbohrungen im Bereich der Dichtflächen zu verwenden.



Beschreibung: Plan 12 ist ähnlich ausgeführt wie Plan 11, zusätzlich wird ein Sieb in die Verrohrung eingesetzt.

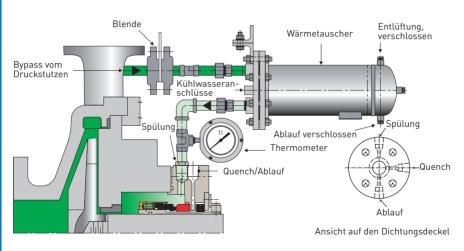
Vorteile: Keine Prozessverunreinigung, Feststoffe werden aus dem Kreislauf entfernt, die Dichtung bleibt sauber.

Allgemeines: Zur Verbesserung der Kühlung und Schmierung der Gleitflächen sind tangentiale Eintritte oder mehrere Spülbohrungen im Bereich der Dichtflächen zu verwenden. Bei diesem Plan sollte zusätzlich ein Differenzdruckanzeiger oder -alarmgeber eingesetzt werden, der anzeigt, wenn das Sieb sich zugesetzt hat.


Hinweis: Anmerkung in der API 682, 4. Auflage: "Für diesen Plan wurde die Betriebsdauer von 3 Jahren nicht nachgewiesen."

Beschreibung: Bei Plan 13 erfolgt die Zirkulation vom Stoffbuchsraum zurück zum Saugstutzen der Pumpe. Standardanordnung für vertikale Pumpen und Pumpen mit großer Förderhöhe.

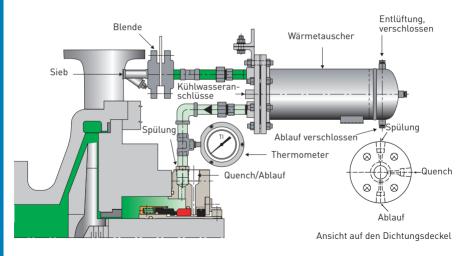
Vorteile: Bei Plan 13 ist es möglich, den Druck im Stoffbuchsraum durch die entsprechende Dimensionierung von Blende und Drossel zu erhöhen oder zu reduzieren.


Allgemeines: Plan 13 wird üblicherweise bei vertikalen Pumpen eingesetzt, da hier der Pumpenenddruck an der Gleitringdichtung ansteht (Druckstutzen oben). Plan 13 ist bei der Abführung der Reibwärme der Gleitringdichtung nicht so effektiv wie Plan 11 und erfordert deshalb höhere Zirkulationsmengen.

Beschreibung: Plan 14 ist eine Kombination der Pläne 11 und 13. Zirkulation vom Druckstutzen der Pumpe in den Stoffbuchsraum und wieder zurück zum Saugstutzen der Pumpe.

Vorteile: Die Kühlung kann optimiert werden mit einer Spülung direkt an den Gleitflächen. Plan 14 ermöglicht eine automatische Entlüftung der Dichtungskammer.

Allgemeines: Wird häufig bei vertikalen Pumpen eingesetzt, um optimalen Durchfluss und Abstand zum Dampfdruck des Prozessmediums zu gewährleisten, unabhängig von der Ausführung der Grundbuchse.



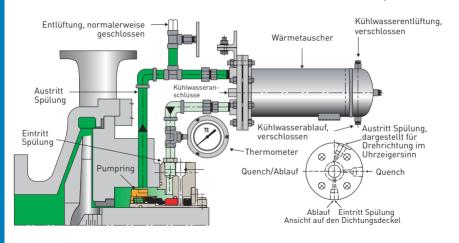
Beschreibung: Plan 21 ist eine gekühlte Variante von Plan 11. Zirkulation des Produkts vom Druckstutzen der Pumpe durch eine Blende zum Wärmetauscher, um die Temperatur vor Eintritt in die Dichtungskammer zu senken.

Vorteile: Kühlung und Schmierung der Dichtung durch die Prozessflüssigkeit, somit keine Verunreinigung des Prozessmediums. Durch die Kühlung wird die Schmierfähigkeit verbessert und die Gefahr einer Verdampfung in der Dichtungskammer reduziert.

Allgemeines: Aufgrund der hohen Wärmebelastung des Wärmetauschers ist Plan 21 ist kein bevorzugter Plan, weder von der API noch von den meisten Anwendern. Plan 23 wird bevorzugt.

• Quench optional

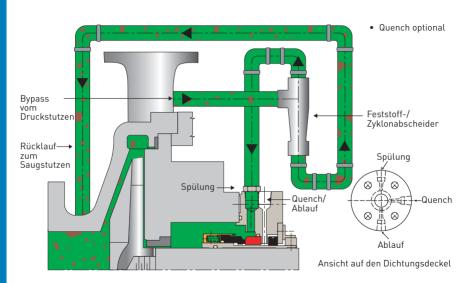
Beschreibung: Plan 22 ist ähnlich ausgeführt wie Plan 21, zusätzlich wird ein Sieb in die Verrohrung eingesetzt.


Vorteile: Keine Produktverunreinigung, Feststoffe werden aus dem Kreislauf entfernt, die Dichtung bleibt sauber.

Nachteil: Plan 22 sollte mit Vorsicht verwendet werden, da sich die Siebe zusetzen können, was zum Ausfall der Gleitringdichtung führen kann.

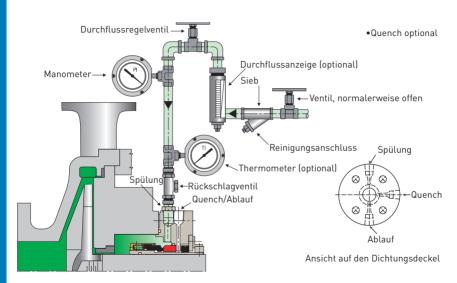
Allgemeines: Zur Verbesserung der Kühlung und Schmierung der Gleitflächen sind tangentiale Eintritte oder mehrere Spülbohrungen im Bereich der Dichtflächen zu verwenden. Bei diesem Plan sollte zusätzlich ein Differenzdruckanzeiger oder -alarmgeber eingesetzt werden, der anzeigt, wenn das Sieb sich zugesetzt hat.

HINWEIS: Anmerkung der API 682, 4. Auflage: "Für diesen Plan wurde die Betriebsdauer von 3 Jahren nicht nachgewiesen."


· Quench optional

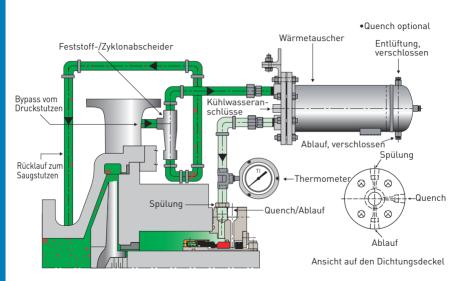
Beschreibung: Plan 23 ist ein geschlossener Zirkulationskreislauf mit Pumpring für die Zirkulation des Prozessmediums durch einen Wärmetauscher und zurück in den Stoffbuchsraum.

Vorteile: Effizienter als Plan 21, geringeres Risiko der Verstopfung des Wärmetauschers. Niedrigere Temperatur verbessert die Schmierfähigkeit und erhöht den Abstand zum Dampfdruck des Prozessmediums.


Allgemeines: Bevorzugter Plan für Heißwasseranwendungen. Um die Vermischung des heißen Produkts mit dem kühleren, geschlossenen Kreislaufsystem zu reduzieren, wird eine Drosselbuchse mit geringem Spiel empfohlen.

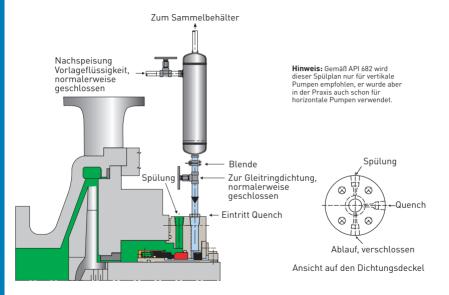
Beschreibung: Plan 31 ist eine Variante von Plan 11, zusätzlich mit einem Zyklonabscheider ausgerüstet. Die Zirkulation erfolgt vom Druckstutzen der Pumpe über den Zyklonabscheider zur Dichtungskammer.

Vorteile: Im Gegensatz zu einem Sieb oder Filter muss ein Zyklonabscheider nicht getauscht oder gereinigt werden. Feststoffe werden aus dem Spülstrom entfernt, um die Dichtung sauber zu halten.


Allgemeines: Dieser Plan sollte bei feststoffhaltigen Medien eingesetzt werden, bei welchen das spezifische Gewicht der Feststoffe mindestens doppelt so hoch ist, wie das des Prozessmediums. Üblicherweise erfordert der Zyklonabscheider eine Druckdifferenz von mindesten 1 bar (15psi), um ordnungsgemäß zu funktionieren. Zur Optimierung der Durchflussmenge und der Abscheideeffizienz können Blenden eingesetzt werden.

Beschreibung: Bei Plan 32 wird eine Spülflüssigkeit von einer externen Quelle zur Dichtung geleitet. Dieser Plan wird fast immer in Verbindung mit einem engen Spiel in der Grundbuchse eingesetzt.

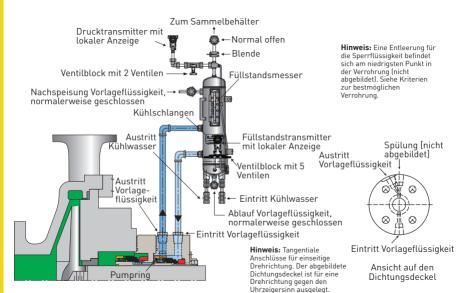
Vorteile: Die externe Spülflüssigkeit kann bei richtiger Auswahl zu einer deutlich längeren Lebensdauer der Dichtung führen.


Allgemeines: Beim Einsatz einer Fremdflüssigkeit muss die Wirtschaftlichkeit und die Gefahr der Verdünnung des Prozessmediums berücksichtigt werden.

Beschreibung: Plan 41 ist eine Kombination aus Plan 21 und Plan 31. Bei Plan 41 wird das Produkt vom Druckstutzen der Pumpe zunächst durch einen Zyklonabscheider und dann durch einen Wärmetauscher geführt, bevor es in den Stoffbuchsraum gelangt.

Vorteile: Feststoffe werden entfernt, die Produkttemperatur gesenkt und somit die Dichtungsumgebung optimiert.

Allgemeines: Plan 41 wird üblicherweise eingesetzt bei Hochtemperaturanwendungen mit feststoffbeladenen Medien. Je nach Prozesstemperatur können hohe Betriebskosten anfallen. Zur Optimierung der Durchflussmenge und der Abscheideeffizienz können Blenden eingesetzt werden.

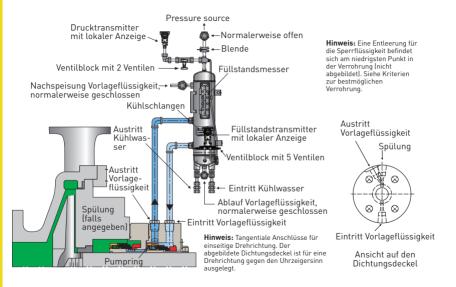

EINZELDICHTUNGEN, QUENCH

Beschreibung: Bei Plan 51 liefert ein externer Behälter eine drucklose, nicht zirkulierende Flüssigkeit zum Quenchanschluss der Gleitringdichtung. Wird üblicherweise mit einer zusätzlichen Hilfsdichtung oder einer Drosselbuchse verwendet.

Vorteile: Kann verwendet werden, um Kristallisation oder Vereisung auf der Atmosphärenseite der Dichtung zu verzögern/verhindern.

Allgemeines: Eine sorgfältige Auswahl der Hilfsdichtung ist erforderlich, um ein Austreten von Sperrflüssigkeit aus dem Behälter zu verzögern/verhindern.

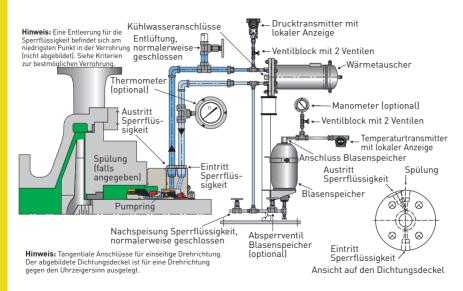
Abhängig von der Art der eingesetzten Hilfsdichtung wird eine Betriebsdauer von 3 Jahren eventuell nicht erreicht.



DOPPELDICHTUNGEN, DRUCKLOS

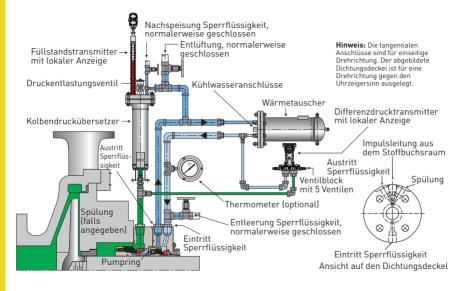
Beschreibung: Bei Plan 52 wird ein externer Flüssigkeitsbehälter mit einer drucklosen Vorlageflüssigkeit eingesetzt, die auch die Versorgung der außenliegenden Dichtung sicherstellt. Die Zirkulation wird oft durch einen Pumpring oder ein Fördergewinde erzeugt.

Vorteile: Im Vergleich zu Einzeldichtungen haben nicht druckbeaufschlagte Doppeldichtungen niedrigere Leckagewerte, bieten höhere Sicherheit und längere Laufzeiten.


Allgemeines: Zur Abführung von Wärme aus der Vorlageflüssigkeit stehen Kühlschlangen im Flüssigkeitsbehälter zur Verfügung.

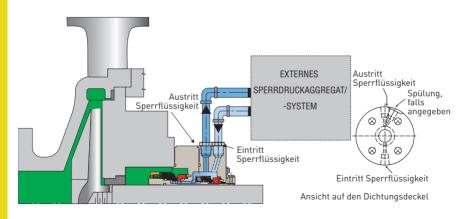
Beschreibung: Bei Plan 53A wird ein externer Flüssigkeitsbehälter für die Sperrflüssigkeitsversorgung einer druckbeaufschlagten Doppeldichtung eingesetzt. Der Behälter wird durch ein Gas, meist Stickstoff, drucküberlagert. Die Zirkulation wird oft durch einen Pumpring oder ein Fördergewinde erzeugt.

Vorteile: Die Behältergröße kann je nach Zirkulationsmenge optimiert werden. Verschleißpartikel setzen sich am Boden des Behälters ab und gelangen nicht mehr zurück in den Zirkulationskreislauf.


Allgemeines: Die Wärme wird durch die Kühlschlange im Behälter abgeführt. Bei Drücken über 21 bar(g)/300 psi(g) und Temperaturen über 120 °C/250 °F kann es zum Gaseintrag in der Sperrflüssigkeit kommen. Während die API 682, 4. Auflage, einen Grenzwert von 10 bar(g)/150 psi(g) vorschlägt, um Gaseinträge zu vermeiden, können korrekt ausgewählte Sperrflüssigkeiten bis zum oben genannten Grenzwert eingesetzt werden.

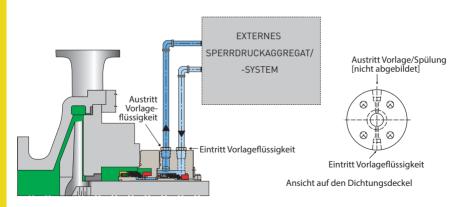
Beschreibung: Bei Plan 53B wir ein Blasenspeicher eingesetzt, um das Sperrgas von der Sperrflüssigkeit zu trennen. Ein Wärmetauscher zur Kühlung der Sperrflüssigkeit ist in den Kreislauf integriert. Die Zirkulation wird oft durch einen Pumpring oder ein Fördergewinde erzeugt.

Vorteile: Sollte im Zirkulationskreislauf eine Verunreinigung auftreten, wird diese im geschlossenen Kreislauf zurückgehalten. Mit einem zentralen Nachspeisesystem können mehrere druckbeaufschlagte Doppeldichtungen mit Sperrflüssigkeit versorgt werden.


Allgemeines: Der Blasenspeicher isoliert das Sperrgas von der Sperrflüssigkeit, um die Gaslöslichkeit zu verhindern. Abhängig von der abzuführenden Wärmemenge und den Rahmenbedingungen in den jeweiligen Anlagen, kann der Wärmetauscher wasser- oder luftgekühlt ausgeführt werden (Ripprohre oder Gebläse).

Beschreibung: Bei Plan 53C wird ein Kolbendruckübersetzer eingesetzt, um Druck im Zirkulationskreislauf aufzubauen. Durch eine Impulsleitung vom Stoffbuchsraum zum Kolbendruckübersetzer wird eine konstante Druckdifferenz im Sperrsystem gewährleistet. Ein wasser- oder luftgekühlter Wärmetauscher sorgt für die Kühlung der Sperrflüssigkeit. Die Zirkulation wird oft durch einen Pumpring oder ein Fördergewinde erzeugt.

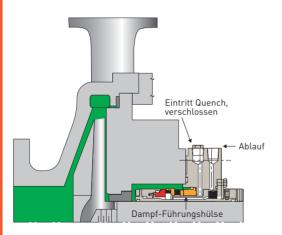
Vorteile: Der Sperrdruck regelt sich automatisch prozentual höher, als der Abdichtdruck (Referenzdruck) im Stoffbuchsraum.

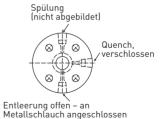

Allgemeines: Abhängig von der abzuführenden Wärmemenge kann der Wärmetauscher wasser- oder luftgekühlt ausgeführt werden (Rippenrohre oder Gebläse). Die Impulsleitung zum Kolbendruckübersetzer muss unempfindlich gegen Prozesskontamination und Verstopfen sein.

Beschreibung: Bei Plan 54 wird ein externes System eingesetzt für die Versorgung einer druckbeaufschlagten Doppeldichtung mit einer sauberen Sperrflüssigkeit.

Vorteile: Kann je nach Auslegung mehrere Doppeldichtungen versorgen, um Kosten zu senken. Verhindert Prozessemissionen an die Atmosphäre.

Allgemeines: Plan 54-Systeme können kundenspezifisch an die Einsatzbedingungen angepasst werden. Die Systeme reichen vom direkten Anschluss an Prozessabläufe bis hin zu komplexen Systemen gemäß API 614.

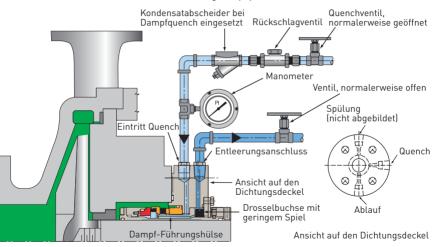



DOPPELDICHTUNGEN, DRUCKLOS

Beschreibung: Bei Plan 55 wird eine saubere, drucklose Vorlageflüssigkeit von einem externen System einer drucklosen Doppeldichtung zugeführt.

Vorteile: Kann je nach Auslegung mehrere Doppeldichtungen mit druckloser Vorlageflüssigkeit versorgen, um Kosten zu reduzieren. Verhindert Prozessemissionen an die Atmosphäre.

Allgemeines: Plan 55-Systeme können kundenspezifisch an die Einsatzbedingungen angepasst werden. Die Systeme reichen vom direkten Anschluss an Prozessabläufe bis hin zu komplexen Systemen gemäß API 614.


Ansicht auf den Dichtungsdeckel

QUENCHDICHTUNGEN

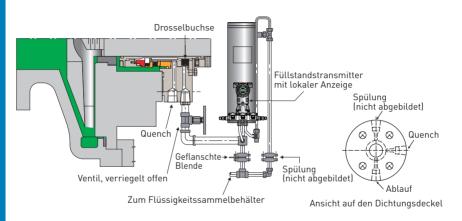
Beschreibung: Ein Quenchanschluss ist an der Gleitringdichtung vorhanden und mit einem Stopfen verschlossen. Kunden können diesen Anschluss je nach Bedarf nutzen. Dieser Plan wird verwendet, wenn der Kunde zu einem späteren Zeitpunkt einen Spülquench anschließen möchte.

Allgemeines: Ermöglicht dem Kunden, einen Schlauch an den Abfluss anzuschließen und Leckagen zum Sammelbehälter zu leiten.

Darstellung Dampfquench

QUENCHDICHTUNGEN

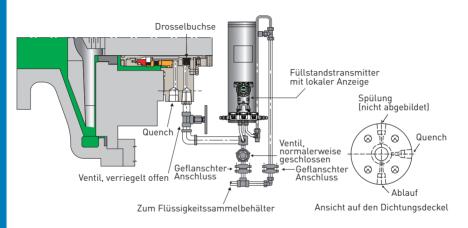
Beschreibung: Plan 62 ist ein gängiger Plan zur Optimierung der Dichtungsumgebung auf der Atmosphärenseite von Einzeldichtungen und Doppeldichtungen mittels Dampf, Stickstoff oder Wasser.


Vorteile: Plan 62 ist eine kostengünstige Alternative zu Tandem-Dichtungen.

Der Quench verhindert oder verzögert die Kristallisierung oder Verkokung der Leckage des Prozessmediums. Der Quench hat zusätzlich eine gewisse Kühlwirkung.

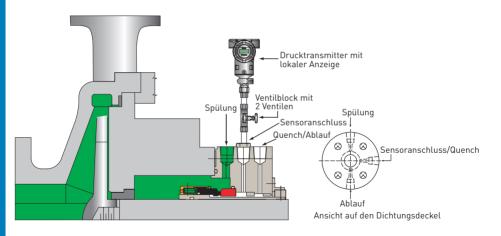
Allgemeines: Typische Anwendungen sind Dampfquench für Hochtemperaturanwendungen zur Verzögerung von Verkokungen, Stickstoffquench für Tieftemperaturanwendungen zur Verhinderung von Vereisung und Wasserquench zur Vermeidung von Kristallisierung oder Verschlammung des Prozessmediums an der Atmosphärenseite der Dichtung. Kann mit oder ohne Führungshülse verwendet werden.

Für den Dampfquench wird ein Kondensatabscheider empfohlen. Ein Manometer ist optional.


HINWEIS: Siehe John Crane Technischer Bericht TRP-Spülflüssigkeit für zusätzliche Informationen.

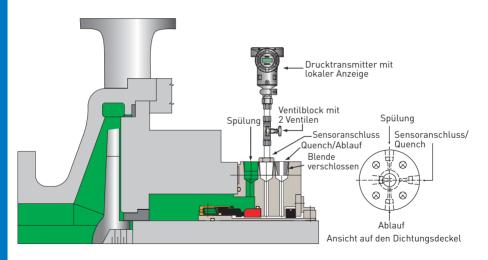
Beschreibung: Plan 65A wird zur Ermittlung flüssiger Leckagen von Einzeldichtungen eingesetzt. Bei erhöhter Leckage wird durch einen Füllstandstransmitter am Sammelbehälter ein Alarm ausgelöst.

Vorteile: Alarm bei übermäßiger Leckage, wenn nötig automatische Abschaltung der Anlage.


Allgemeines: Das System verfügt über einen Bypass, um die Blende zu umgehen und dadurch einen hohen Druck an der Atmosphärenseite zu verhindern. Die Drosselbuchse muss passend zu den Eigenschaften des Prozessmediums ausgeführt werden.

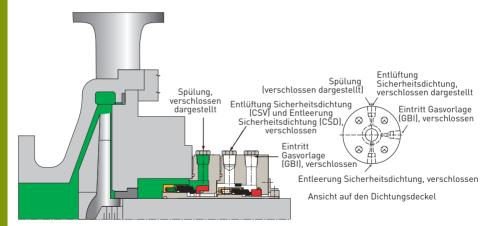
Beschreibung: Plan 65B wird zur Ermittlung flüssiger Leckagen von Einzeldichtungen eingesetzt. Die kumulierte Leckagemenge kann mittels Füllstandstransmitter am Sammelbehälter gemessen werden.

Vorteile: Alarm bei übermäßiger Leckage, wenn nötig automatische Abschaltung der Anlage.


Allgemeines: Das System verfügt über einen Bypass, um die Blende zu umgehen und dadurch einen hohen Druck an der Atmosphärenseite zu verhindern. Die Drosselbuchse muss passend zu den Eigenschaften des Prozessmediums ausgeführt werden.

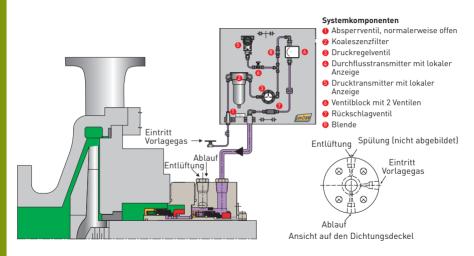
Beschreibung: Plan 66A ist ein Plan zur Leckageüberwachung und -erkennung bei Einzeldichtungen, der häufig in der Pipelineindustrie eingesetzt wird. Die Leckage der Dichtung wird über einen Drucktransmitter überwacht, der einen Alarm auslöst, wenn die Leckage zu groß ist oder die Dichtung ausfällt.

Vorteile: Durch eine Drosselbuchse auf der Atmosphärenseite wird übermäßige Leckage zum Austritt verhindert und so durch die Druckerhöhung bei Versagen der Gleitringdichtung ein Alarm ausgelöst.


Allgemeines: Leckagen sollten gesammelt und zu einem Leckagesammelbehälter oder einem Rückgewinnungssystem geleitet werden. Die Drosselbuchsen im Stoffbuchsraum müssen passend zu den Eigenschaften des Prozessmediums ausgeführt werden.

Beschreibung: Plan 66B ist ein Plan zur Leckageüberwachung und -erkennung bei Einzeldichtungen, der häufig in der Pipelineindustrie eingesetzt wird. Die Leckage der Dichtung wird über einen Drucktransmitter überwacht, der einen Alarm auslöst, wenn die Leckage zu groß ist oder die Dichtung ausfällt.

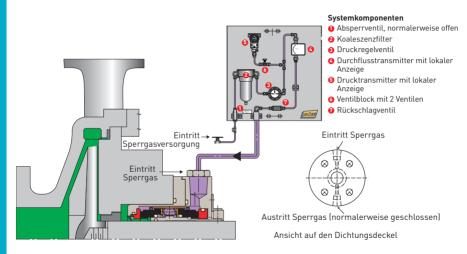
Vorteile: Durch eine Blende am Entleerungsanschluss der Gleitringdichtung wird übermäßige Leckage zum Austritt verhindert. Durch die Druckerhöhung wird bei Versagen der Gleitringdichtung ein Alarm ausgelöst.


Allgemeines: Leckagen sollten gesammelt und zu einem Leckagesammelbehälter oder einem Rückgewinnungssystem geleitet werden. Die Drosselbuchsen im Stoffbuchsraum müssen passend zu den Eigenschaften des Prozessmediums ausgeführt werden.

SICHERHEITSDICHTUNGEN

Beschreibung: Gewindeanschlüsse für die Verwendung durch den Kunden. Dieser Plan wird verwendet, wenn der Kunde in Zukunft eine Gasvorlage einsetzen möchte. Der Anschluss an der Gleitringdichtung ist vorhanden und mit einem Stopfen verschlossen.

Vorteile: Ermöglicht dem Kunden, bei Bedarf ein Vorlagegas anzuschließen.



SICHERHEITSDICHTUNGEN

Beschreibung: Bei Plan 72 wird zur Versorgung der Sicherheitsdichtung ein externes Vorlagegas, in der Regel Stickstoff, mit niedrigem Druck bzw. drucklos über ein Gasversorgungssystem zwischen innerer und äußerer Gleitringdichtung angeschlossen.

Vorteile: Der Eintrag eines Vorlagegases wie Stickstoff reduziert die Prozessemissionen, beugt der Vereisung bei Tieftemperaturanwendungen vor und sorgt für eine gewisse Kühlung der äußeren Dichtung.

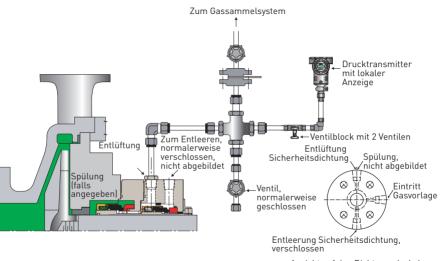
Allgemeines: Plan 72 wird üblicherweise mit Plan 75 für kondensierende Leckage an der Hauptdichtung eingesetzt, oder mit Plan 76 für nicht kondensierende Leckage.

GASGESPERRTE DOPPELDICHTUNGEN

Beschreibung: Bei Plan 74 wird über ein Versorgungssystem (Gaspanel) ein druckbeaufschlagtes Gas, in der Regel Stickstoff, für gasgeschmierte Doppeldichtungen geliefert. Es entfernt Restfeuchte aus dem Sperrgas, filtert das Sperrgas und regelt den Sperrdruck.

Vorteile: Kostengünstiges, wartungsarmes System im Vergleich zu Systemen, die für druckbeaufschlagte Flüssigkeiten eingesetzt werden. Die Leckage an die Atmosphäre ist ein inertes Gas. Keine Emissionen.

Allgemeines: Als Sperrgas wird in der Regel Stickstoff verwendet. Für Hochdruckanwendungen kann der Sperrgasdruck durch eine Gasdruckerhöhungseinheit (Booster) erhöht werden.


Zum Dampfrückgewinnungssystem Blende → -Ventil, normalerweise offen _ Drucktransmitter mit lokaler Anzeige • ← Ventilblock mit Füllstandstransmitter mit lokaler Anzeige 2 Ventilen Prüfpunkt (optional) Ventilblock mit 5 Ventilen Ablauf Entlüftung Sicherheitsdichtung, verschlossen Spülung Inicht abgebildet) Ablassventil. normalerweise geschlossen -Füllstandsmesser Zum Flüssigkeitssammelbehälter → -Eintritt Leckagesammelbehälter Gasvorlage, verschlossen Entleerung Sicherheitsdichtung Zum Dampfrückgewinnungssystem

SICHERHEITSDICHTUNGEN

Beschreibung: Bei Plan 75 wird ein Leckagesammelbehälter mit einer Sicherheitsdichtung für flüssige oder kondensierte Prozessleckagen von der Primärdichtung eingesetzt.

Vorteile: Der Leckagesammelbehälter ist mit einem Drucktransmitter ausgerüstet, der einen Druckaufbau durch übermäßige Leckage oder einen Ausfall der Primärdichtung anzeigt.

Allgemeines: Plan 75 kann in Verbindung mit einem drucklosen Vorlagegas (Plan 72) eingesetzt werden.

Ansicht auf den Dichtungsdeckel

SICHERHEITSDICHTUNGEN

Beschreibung: Plan 76 ist ein System zur Ableitung von nicht kondensierten Leckagen der Primärdichtung zu einer Fackelleitung oder einem Gasrückführsystem.

Vorteile: Geringere Anschaffungs- und Wartungskosten als beim Einsatz von Plan 52 bei nicht druckbeaufschlagten Doppeldichtungen.

Allgemeines: Plan 76 kann in Verbindung mit einem drucklosen Vorlagegas (Plan 72) eingesetzt werden.

VERWENDUNG DES
PLANS 99 VOM KUNDEN
FESTGELEGT ODER MIT
GENEHMIGUNG DES
KUNDEN

EINZELDICHTUNGEN, DOPPELDICHTUNGEN, QUENCHDICHTUNGEN, SICHERHEITSDICHTUNGEN UND GASGESCHMIERTE DOPPELDICHTUNGEN

Beschreibung: Plan 99 ist ein kundenspezifischer Spülplan, der nicht durch bestehende Pläne definiert ist.

Allgemeines: Die Beschreibung und die Anforderungen dieses Plans müssen in Spezifikationen außerhalb der API 682 klar definiert sein. Wo immer möglich, sollten die spezifischen Anforderungen in einem neuen Spülplan definiert werden.

Die Angaben in diesem Abschnitt dienen nur als Orientierungshilfe und dürfen nicht für die Leistungsberechnung einzelner Dichtungen verwendet werden. Leistungsdaten und Werkstoffeigenschaften können je nach Anwendung, Druck, Temperatur und Dichtungsanordnung variieren. Für anwendungsspezifische Berechnungen wenden Sie sich bitte an John Crane.

SCHMIERSTOFFE

Folgende Schmierstoffe werden von John Crane empfohlen.

Anwendung	Schmierstoff	Hinweis
Elastomer-O-Ringe außer Silikonkautschuk	DuPont™ Krytox® GPL 206 Dow Corning® 111 Glyzerin	Sehr dünn per Hand auftragen
O-Ringe aus Silikonkautschuk	Glyzerin	Sehr dünn per Hand auftragen
Elastomerbalg	Glycerin-Propylen-Glykol- Seifenwasser	Mit dem Pinsel auftragen
Bolzen, Schrauben, Muttern und Verbindungselemente	DuPont Krytox GPL 206 Dow Corning 111 Nickel- oder Silber-basierte Anti-Seize- Verbindungen	Minimales Auftragen per Pinsel oder Hand

DuPont und Krytox sind eingetragene Marken von E. I. du Pont de Nemours and Company. Dow Corning ist eine eingetragene Marke der Dow Corning Corporation.

ANZUGSDREHMOMENTE DER ANTRIEBSSCHRAUBEN

Gewindestift mit Innensechskant und Ringschneide							
Anzugsdre	hmomente [N	lm] (μ = 0,125	geschmiert)				
Gewinde	Hohe Zugfestigkeit Stahl, Größe 14.9		US-amerikanisches Bundesamt für Materialforschung (ASTM) A453- Gr 660 C				
M4	2,3	1,5					
M5	4,5	3					
M6	7,5	4					
M8	18	11					
M10	36	16	30				
M12	60	40	50				
1/4 – 20	8,8	4,5	6				
5/16 – 18	17,5	10					
3/8 – 16	30	13,5					
7/16 – 14	48	32					
1/2 – 13	69	45					

Zylinderschraube mit Innensechskant Anzugsdrehmomente [Nm] (μ = 0,125 geschmiert)						
Größe	(Klasse 12.9)	(316 A4-70)				
M4	4,5	2				
M5	9,4	4				
M6	16	6,5				
M8	38	16				
M10	77	32				
M12	135	55				
M14	215	90				
M16	340	140				
M20	663	275				

Die Drehmomente gelten nur für Antriebsschrauben und sollten nicht für andere Schrauben in der Dichtungsbaugruppe angewandt werden.

ANZUGSDREHMOMENTE DER ANTRIEBSSCHRAUBEN

Gewindestift mit Innensechskant und Ringschneide (UNRC) Anzugsdrehmoment [in-lb] [μ=0,125]						
Größe	Stahl 314 SS					
Nr. 10	33	18				
1/4"	78	40				
5/16"	156	85				
3/8"	273	120				
7/16"	428	280				
1/2"	615	400				

Die Drehmomente gelten nur für Antriebsschrauben und sollten nicht für andere Schrauben in der Dichtungsbaugruppe angewandt werden.

Zylinderschraube mit Innensechskant					
Anzugsdı	rehmoment [in-lb] [µ=0,125]			
Größe	Stahl ASTM-A574	316 SS ASTM-A193			
Nr. 6	30	15			
Nr. 8	55	28			
Nr. 10	80	40			
1/4"	180	95			
5/16"	390	170			
3/8"	700	300			
7/16"	1125	485			
1/2"	1700	750			
5/8"	3000	1270			
3/4"	5500	2260			

TEMPERATURGRENZEN FÜR FLEXIBLE ELEMENTE

	Temperaturgrenzen	bei Verwendung als:
Gummi	Bälge, gleitend	Bälge, gleitend
Guillin	und statische O-Ringe °C	und statische O-Ringe °F
Nitril für mittlere Temperaturen	Minus 40 °C bis plus 120 °C +	Minus 40 °F bis plus 250 °F +
Nitril für niedrige Temperaturen	Minus 55 °C bis plus 100 °C	Minus 65 °F bis plus 212 °F
Neopren	Minus 40 °C bis plus 100 °C	Minus 40 °F bis plus 212 °F
Fluorkohlenstoff/Fluoroelastomer	Minus 30 °C bis plus 205 °C †	Minus 20 °F bis plus 400 °F †
Fluorkohlenstoff GLT	Minus 45 °C bis plus 205 °C †	Minus 50 °F bis plus 400 °F †
EPDM-Gummi	Minus 40 °C bis plus 150 °C *	Minus 40 °F bis plus 300 °F *
Fluorsilikon	Minus 60 °C bis plus 175 °C ▼	Minus 75 °F bis plus 350 °F ▼
Silikon	Minus 55 °C bis plus 200 °C ▼	Minus 65 °F bis plus 390 °F ▼
TFE-P/TFE-Propylen	0 °C bis plus 205 °C	32 °F bis plus 400 °F
HT-FFKM (war Perfluorelastomer 1)	Minus 20 °C bis plus 260 °C ■	Minus 4 °F bis plus 500 °F ■
LT-FFKM (war Perfluorelastomer 2)	Minus 20 °C bis plus 215 °C ●	Minus 4 °F bis plus 420 °F ●

⁺ Für Wasseranwendungen beträgt die max. Temperatur 100 °C (212 °F)

[†] Für Wasseranwendungen beträgt die max. Temperatur 135 °C (275 °F)

^{*}Nicht zur Verwendung in Kontakt mit Produkten auf Kohlenwasserstoffbasis

[■] Für Wasseranwendungen beträgt die max, Temperatur 90°C (194°F)

[•] Für statische Anwendungen minus 25 °C bis plus 215 °C (minus 13 °F bis plus 420 °F)

[▼] Diese Elastomerwerkstoffe haben eine begrenzte Abriebfestigkeit und Bewegungstoleranz

TEMPERATURGRENZEN FÜR FLEXIBLE ELEMENTE

	Temperaturgrenzen	bei Verwendung als:
_	Vollständig komprimierter	
PTFE / Graphit	Ring	Gegenringe
	(d. h. Metallbalgpackung)	
Reines PTFE	Minus 60 °C bis plus 260 °C	Minus 20 °C bis plus 180 °C
	Minus 76 °F bis plus 500 °F	Minus 4 °F bis plus 356 °F
25 % PTFE glasfaserverstärkt	Minus 100 °C bis plus 280 °C	Minus 50 °C bis plus 230 °C
	Minus 148 °F bis plus 536 °F	Minus 58 °F bis plus 446 °F
25 % PTFE kohleverstärkt	Minus 80 °C bis plus 250 °C	Minus 40 °C bis plus 200 °C
	Minus 112 °F bis plus 482 °F	Minus 40 °F bis plus 392 °F
Graphit-/Edelstahlnetz	Minus 212 °C bis plus 500 °C	
	Minus 350 °F bis plus 932 °F	
Graphit oder Cranfoil	Minus 212 °C bis plus 500 °C	Minus 40 °C bis plus 400 °C
	Minus 350 °F bis plus 932 °F	Minus 40 °F bis plus 752 °F

HINWEIS: Bei Verwendung von FEP-ummantelten Fluorkohlenstoff-O-Ringen oder Gegenringen aus PTFE/Graphit muss der Gegenring mit Verdrehsicherung versehen werden.

HINWEIS: Die angegebenen Einsatzgrenzen sind lediglich Richtwerte und berücksichtigen keinerlei

Erfahrungen vor Ort.

EINBAUKRITERIEN UND -TOLERANZEN

Einbaukriterium Konzentrizität	Richtwert/Grenzwert	Anmerkungen	
Welle zur Dichtungskammer	Weniger als 125 µm (0,005") TIR (Gesamtmesswert)	TIR wird auch als "Full Indicator Movement" (FIM) bezeichnet	
Rundlaufabweichung der Welle gemessen an einer am Gehäuse montierten Anzeige	Weniger als 25 μm (0,001") TIR		
Rundlaufabweichung der Wellenschutzhülse, Außendurchmesser zu Innendurchmesser	Weniger als 25 µm (0,001") TIR		
Rechtwinkligkeit der Stoffbuchsenstirnfläche zur Welle	Weniger als 0,5 µm/mm der Dichtungskammerbohrung (0,0005"/Zoll der Dichtungskammerbohrung)		
Zentrierung der Dichtung muss durch eine Registerpassung erfolgen. Die Registerpassfläche muss konzentrisch zur Welle sein	Weniger als 125 μm (0,005") TIR		
Axialspiel der Welle	Weniger als 0,08 mm (0,003") TIR	Dies ist die maximale Bewegung während des dynamischen Betriebs	
Wellentoleranz Wellenoberfläche Textur/Rauheit	h6 1,6 µm Ra (64 µin Ra)		

LÄNGE

Von	In	Multipliziert mit	Von	In	Multipliziert mit
Zoll	mm	25,4	mm	Zoll	0,03937
Zoll	m	0,0254	m	Zoll	39,37
Fuß	mm	304,8	mm	Fuß	0,00328
Fuß	m	0,3048	m	Fuß	3,281
Yards	m	0,9144	m	Yards	1,0936
Meilen	km	1,6093	km	Meilen	0,6214
μin	mm	2,54x10 ⁻⁵	mm	μin	39370
μin	Nm	25,4	Nm	μin	0,03937

BEREICH

Von	In	Multipliziert mit	Von	In	Multipliziert mit
Zoll ²	mm²	645,16	mm²	Zoll ²	0,00155
Fuß²	m²	0,0929	m²	Fuß²	10,7639
Yards ²	m²	0,8361	m²	Yards ²	1,1960
Acre	Hektar	0,4047	Hektar	Acre	2,4711
Meilen ²	km²	2,59	km²	Meilen ²	0,3861

DRUCK

Von	In	Multipliziert mit	Von	In	Multipliziert mit
Psi	bar	0,06895	bar	Psi	14,5038
Psi	kg/cm²	0,07031	kg/cm²	Psi	14,2233
Psi	N/m²(Pa)	6894,757	N/m ²	Psi	1,4504 x 10 ⁻⁴
kg/cm²	bar	0,09807	bar	kg/cm²	1,01972
Atms.	Psi	14,6959	Psi	Atms.	0,06805
Atms.	kg/cm²	1,03323	kg/cm²	Atms.	0,96784
Atms.	bar	1,01325	bar	Atms.	0,98692
N/m² (Pa)	bar	1x10 ⁻⁵	bar	N/m²	1x10 ⁵
kPa	bar	0,01	bar	kPa	100
MPa	bar	10	bar	MPa	0,1
bar	torr(mm Hg)	750,0638	torr(mm Hg)	bar	0,001333
Psi	ft(flüssig)	2,307 ÷ SG	ft(flüssig)	Psi	0,4335 x SG
Psi	m(flüssig)	0,703 ÷ SG	m(flüssig)	Psi	1,4223 x SG
bar	ft(flüssig)	33,4552 ÷ SG	ft(flüssig)	bar	0,02989 x SG
bar	m(flüssig)	10,1972 ÷ SG	m(flüssig)	bar	0,09806 x SG
kg/cm²	m(flüssig)	10 ÷ SG	m(flüssig)	kg/cm²	0,1 x SG

VOLUMEN

Von	In	Multipliziert mit	Von	In	Multipliziert mit
Fuß ³	m³	0,028317	m ³	Fuß³	35,3147
Fuß ³	Liter(dm³)	28,317	Liter(dm³)	Fuß³	0,035315
Zoll ³	m³	1,6387x10 ⁻⁵	m³	Zoll ³	61023,74
Gallonen (Imp.)	Gallonen (USA)	1,20095	Gallonen (USA)	Gallonen (Imp.)	0,83267
Gallonen (Imp.)	m³	4,5461x10 ⁻³	m³	Gallonen (Imp.)	219,9692
Gallonen (Imp.)	Liter(dm³)	4,54609	Liter	Gallonen (Imp.)	0,21997
Gallonen (USA)	m ³	0,003785	m³	Gallonen (USA)	264,1721
Gallonen (USA)	Liter(dm³)	3,7854	Liter	Gallonen (USA)	0,26417
Barrel(bbl) Öl	Gallonen (Imp.)	34,9723	Gallonen (Imp.)	Barrel(bbl) Öl	0,028594
Barrel(bbl) Öl	Gallonen (USA)	42	Gallonen (USA)	Barrel(bbl) Öl	0,02381
Barrel(bbl) Öl	m³	0,1590	m³	Barrel(bbl) Öl	6,2898
Barrel(bbl) Öl	Liter(dm³)	158,9873	Liter(dm³)	Barrel(bbl) Öl	0,006290

VOLUMEN DURCHFLUSSRATE

Von	In	Multipliziert mit	Von	In	Multipliziert mit	
Gall(Imp.)/min	Liter/min.	4,5461	Liter/min.	Gall(Imp.)/min	0,21997	
Gall(USA)/min	Liter/min.	3,7854	Liter/min.	Gall(USA)/min	0,26417	
Fuß³/min	Liter/min.	28,3168	Liter/min.	Fuß³/min	0,03532	
m³/Stunde	Liter/min.	16,6667	Liter/min.	m³/Stunde	0,06	
Barrel Öl/Tag	Liter/min.	0,1104	Liter/min.	Barrel Öl/Tag	9,0573	
Fuß³/Sek	Liter/min.	1699,01	Liter/min.	Fuß³/Sek	5,886x10 ⁻⁴	

GEWICHT/KRAFT

Von	In	Multipliziert mit	Von	In	Multipliziert mit
lbs	kg	0,4536	kg	lbs	2,2046
Tonnen (lang)	kg	1016,05	kg	Tonnen (lang)	9,842x10 ⁻⁴
Tonnen (kurz)	kg	907,19	kg	Tonnen (kurz)	1,102x10 ⁻³
Tonnen (lang)	Tonnen	1,016047	Tonnen	Tonnen (lang)	0,9842
Tonnen (kurz)	Tonnen	0,9072	Tonnen	Tonnen (kurz)	1,1023
lbsf	N	4,4482	N	lbsf	0,2248
kgf	N	9,8067	N	kgf	0,10197
Kiloponds	N	9,8067	N	Kiloponds	0,10197
Tonnen (lang)	kN	9,96402	kN	Tonnen (lang)	0,10036

LEISTUNG

Von	In	Multipliziert n	nit Von	In	Multipliziert mit
PS	kW	0,7457	kW	PS	1,34102
PS (metrisch) auch hp, CV oder ch	kW	0,7355	kW	PS (metrisch)	1,35962
Btu/Std	kW	2,9307x10 ⁻⁴	kW	Btu/Std	3412,1416
ft.lbf/Sek	kW	0.001356	kW	ft.lbf/Sek	737,5622

DREHMOMENT

Von	In	Multipliziert mit	Von	In	Multipliziert mit
lbf.ft	Nm	1,3558	Nm	lbf.ft	0,73756
lbf.in	Nm	0,112985	Nm	lbf.in	8,85075
Unze pro Inch	Nm	0,007062	Nm	Unze pro Inch	141,6119
kgf.m	Nm	9,80665	Nm	kgf.m	0,10197

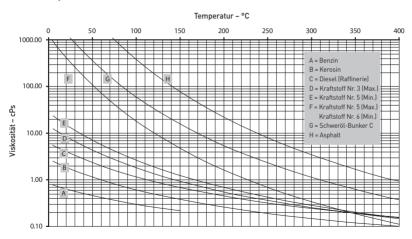
DICHTE/SPEZIFISCHES GEWICHT (SG)

5101112/31 2211 1301123 02 W10111 (30)						
Von	In	Multipliziert	Multipliziert mit Von		Multipliziert mit	
lbs/ft³	kg/m³	16,01846	kg/m³	lbs/ft³	0,06243	
grms/cm ³	kg/m³	1000	kg/m³	grms/cm³	0,001	
Pfund/Gall. (USA)	kg/m³	119,8264	kg/m³	Pfund/Gall. (USA)	0,008345	

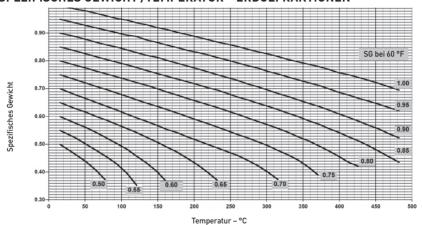
API-GRAVITÄT - °API

Grad Baumé

$$^{\circ}$$
Bé = 145- $\frac{145}{5G}$ SG = $\frac{145}{45 - ^{\circ}$ Bé


Die oben aufgeführte Formel gilt für Lösungen mit einer höheren Dichte als Wasser.

VISKOSITÄT - DYNAMISCH UND KINEMATISCH


Von	In	Multipliziert m	nit Von	In	Multipliziert mit
cPs	N.Sek/m ²	0,001	N.Sek/m²	cPs	1000
cPs	Pa. Sek.	0,001	Pa. Sek.	cPs	1000
lbs.Sek/ft²	N.Sek/m ²	47,8803	lbs.Sek/ft²	N.Sek/m²	0,02089
lbs.Sek/ft²	cPs	47880,259	cPs	lbs.Sek/ft²	2,0885x10 ⁻⁵
cSt	m²/Sek	1,0 x 10 ⁻⁶	m²/Sek	cSt	1,0 x 10 ⁶
ft²/Sek	cSt	9,2903 x 10 ⁴	cSt	ft²/Sek	1,0764 x 10 ⁻⁵

 $cSt = 0,226xSSU - \frac{195}{SSU}$ 32 < SSU <100 $cSt = 0,22xSSU - \frac{135}{SSU}$ SSU ≥100 ungefähr:

VISKOSITÄT/TEMPERATUR - ERDÖLPRODUKTE

SPEZIFISCHES GEWICHT / TEMPERATUR - ERDÖLFRAKTIONEN

www.johncrane.com

Nordamerika Europa Lateinamerika Naher Osten und Afrika Asiatisch-Vereinigte Staaten von Großbritannien Brasilien Vereinigte Arabische Pazifischer Raum Emirate Amerika Singapur Tel: 44-1753-224000 Tel: 55-11-3371-2500 Tel: 1-847-967-2400 Fax: 44-1753-224224 Fax: 55-11-3371-2599 Tel: 971-481-27800 Tel: 65-6518-1800 Fax: 1-847-967-3915 Fax: 971-488-62830 Fax: 65-6518-1803 Ein Einsatz der vorgestellten Produkte in einem potenziell gefährlichen und/oder mit Risiken behafteten Prozess ist vor Auswahl und Einbau mit John Crane abzustimmen. Im Interesse einer kontinuierlichen Weiterentwicklung behält sich John Crane das Recht vor, die Konstruktion und Spezifikation der Produkte ohne vorherige Ankündigung zu ändern. Es ist gefährlich, beim Umgang mit aus PTFE hergestellten Produkten zu rauchen. Alte und neue PTFE-Produkte dürfen nicht verbrannt werden. Zertifiziert gemäß ISO 9001 und ISO 14001, Einzelheiten auf Anfrage erhältlich.