

Loadsensor LS100 for indicating the power level (load) of electrical machines

- Simple and quick retrofit sensor solution for indicating the load level of an electrical machine
- Ideally suited for supplying predictive maintenance and similar tools with power level data
- 100% safe, galvanically isolated from machine control system (field buses) or power cabling
- Sensor based on microchip solutions resulting in a small and slim design
- Applications: current level sensing of electrical installations/machines, busbar current sensing

Specification	
Magnetic field sensor technology: Fluxgate	
Supply voltage	5 – 24 V DC
Temperature range	-20°C to +60°C
Fluxgate sensor specification:	
– Range	±1.5 mT (can be increased upon request)
Offset	max. ±8μT
 Offset Drift 	typ. ±5 nT/°C
– Gain error	typ. 0.04%
– Gain drift	typ. ±7ppm/°C
Linearity	±0.1%
– Noise	typ. 1.5 nT/√Hz
– Bandwidth	<47 kHz
Output signal	digital (I2C) or differential analogue
Digital output	16-bit
Output accuracy ¹	<25kW (typ. ≤10kW validated on 600kW machines)
Analogue output	±3.3 V (differential output)
I2C logic level	3.3V
Datarate over I2C	<3.5 kbps (typ. 45 ms per 10 measurements)
I2C address	0x48 (7 bit address)

 $^{1 \ \} Subject to \ cable \ shielding, \ cable \ insulation, \ interference, \ dynamic \ range, \ data \ acquisition \ scheme$

Dimensions and connections

- Case: $L = 60 \, \text{mm}$ (without cable gland), $W = 25 \, \text{mm}$, $H = 28 \, \text{mm}$ (bottom is concave with $r = 12.5 \, \text{mm}$)
- Connector pin (6-pin header male 2.54 mm)
 - 1 SDA
 - 2 SCL
 - 3 Gnd
 - 4 Vcc
 - 5 Vout_P
 - 6 Vout_N

Compliance

- 2011/65/EU, 2015/863 (ROHS), 2012/19/EU (WEEE)
- EN 55022 (emission)
- EN 61000-4-2 (ESD)
- EN61000-4-3 (immunity)
- EN 61000-4-4 (burst)
- EN61000-4-5 (surge)
- EN61000-4-6 (immunity)

Problem solution

Advanced Condition Monitoring and Predictive Maintenance software tools rely typically on artificial intelligence (AI) or machine learning methods, and consequently on a huge number of annotated data. Machine operators prefer non-intrusive data collection, thus the need for safe add-on measurement hardware. The data collected comprises various parameters, however, power consumed or power output is cumbersome to collect without access to the control software. This inexpensive add-on sensor enables the safe data collection of power information by means of measuring the current flow.