Prototype Proofing: Pros and cons of the most common printers ## Proofing for packaging printing ## We compared the most important printers and technologies for true prototype proofing Anyone working with proofing for the packaging industry will come across three common technologies: water-based inkjet printing, eco-solvent and UV inkjet printing. - Water-based inkjet printing is the most common technology for conventional digital proofing. Ink pigments are dissolved in water and the droplets have to penetrate the proofing paper to dry. Therefore, with this technology only specially coated papers and proof media can be printed on. - In eco-solvent inkjet printing, solvent-based inks are used. The ink solution dries by evaporation. This technology enables printing on different materials, such as transparent or metallised foils. UV inkjet printing takes on a special role because its inks are cured and fixed with a special UV light. Flexible substrates such as roll-fed or sheet-fed media and even rigid materials like wooden boards or glass can be printed on. All three technologies have their strengths and production requirements decide the technology of choice. ## GMG's solution: flexibility meets accurate colours Prototype Proofing from GMG combines the flexibility of different printing technologies with superior colour management, proofing software and a vast range of substrates. GMG Color-Proof, GMG OpenColor and the corresponding printer plus substrates with realistic feel – equals true prototype proofing. | | Epson
SC-P7000V (Spectro) | Epson
Stylus Pro WT7900 | Epson
SC-S80600 | Roland
VS300i | Roland
LEC2-330 | Kodak
Approval NX / Kodak
800XL Laminator | |---|---|---|--|--|---|--| | Colour and print technology | | discontinued | | | | discontinued | | Inkjet technology | Piezo Inkjet
Technology /
1 printhead | Piezo Inkjet
Technology /
1 printhead | Piezo Inkjet
Technology /
2 printheads | Piezo Inkjet
Technology /
1 printhead | Piezo Inkjet
Technology /
1 printhead | Thermal Laser Imaging | | Maximum print resolution | 2,880 × 1,440 dpi | 1,440 × 1,440 dpi | 1,440 × 1,440 dpi | 1,440 dpi | 1,440 dpi | 2,540 dpi | | Ink technology | Water-based inks
UltraChrome® HDX | Water-based inks Ultrachrome® HDR with White Ink Technology | Eco solvent inks
UltraChrome® GS3
with Red | Eco solvent inks
Roland
ECO-SOL MAX-ink | UV Inkjet
Roland
ECO-UV EUV5 | Digital Donors | | Ink set / colours | CMYK
+ OGV
11 colours:
Light Black, Photo
Black, Matte Black,
Cyan, Light Cyan,
Yellow, Vivid Magenta,
Vivid Light Magenta,
Purple, Orange, Green | CMYKOG
+ White
9 colours:
Photo Black, Cyan,
Light Cyan, Yellow,
Vivid Magenta,
Vivid Light Magenta,
Orange, Green, White | CMYKOR
+ White/
Metallic Silver
9 or 10 colours:
Black, Light Black, Me-
tallic Silver, Cyan, Light
Cyan, Yellow, Magenta,
Light Magenta, Red,
Orange, White/Silver | CMYK
+ White
+ Metallic
8 colours:
Cyan, Magenta, Yellow,
Black, Light Black,
Light Magenta, White,
Silver | CMYKOR
+ White
+ Gloss varnish/Primer
8 colours:
Cyan, Magenta,
Yellow, Black,
Orange, Red
+ White and
Gloss varnish/Primer | CMYKOGB
+ White
+ Metallic
9 colour foils (donors):
Cyan, Magenta, Yellow,
Black, Orange, Green,
Blue, White, Silver | | Pros and cons | | | | | | | | Colour accuracy | + extended colour
space through
purple, orange and
green + very high colour
accuracy | + extended colour
space through
purple, orange and
green
+ very high colour
accuracy | + extended colour
space through red
and orange + white or silver are
also available + very high colour
accuracy | ⊙no extended colour
space
⊙lower colour accu-
racy with saturated
colours (spot colours) | + extended colour space through red and orange + white and gloss varnish are also available + high colour accuracy | + expanded colour space through orange, green and blue + good simulation of saturated colours (spot colours) ○ less influence on the simulation of overprinting colours (density and curve adjustment, device link profiling with change of separation) | | Variety of substrates | ⊙only special proof
media can be used
(plus some select ink-
jet foils – be aware of
long drying time) | ⊙only special proof
media can be used
(plus some select ink-
jet foils – be aware of
long drying time) | + use of special
solvent injection
papers as well as
metallic, transparent
and transfer foils
(JetComp). Some
production substrates
can also be printed
on, subject to their
properties | + use of special solvent
injection papers as
well as metallic and
transparent foils.
Some production
substrates can also be
printed on, subject to
their properties | + direct proofing on production substrates is possible | + use of production
substrates (lamination
of an image transfer
foil onto the original
substrate) – the re-
quirement is that the
original substrate can
be laminated with the
image transfer foil | | Simulation of white
ink, varnish and
metallic effects | ⊙no white print ⊙no simulation of metallic effects through ink application ⊙no simulation of flood or spot varnish effects | + white print (full surface and partial) Ono simulation of metallic effects through ink application Ono simulation of flood or spot varnish effects | + white print (full surface and partial) + simulation of metallic effects through ink application is possible ⊙ white and metallic silver can't be used at the same time ⊙ no simulation of spot varnish effects (full surface varnish effects can be achieved by subsequent lamination of the printed substrate) | + white print (full surface and partial) + simulation of metallic effects through ink application is possible + white and metallic silver can be used at the same time ⊘ no simulation of spot varnish effects (full surface varnish effects can be achieved by subsequent lamination of the printed substrate) | + white print (full surface and partial) ○ no simulation of metallic effects through ink application + simulation of full surface and spot varnish effects through ink application; variable varnish thickness enables the simulation of raised spot varnish effects (traditionally achieved through screen printing for example) | + white print (full surface and partial) + simulation of metallic effects (full surface and partial) ⊘ no simulation of spot varnish effects (full surface varnish effects can be achieved by subsequent lamination with finishing foils) -> Degloss sheets | | | Epson
SC-P7000V (Spectro) | Epson
Stylus Pro WT7900 | Epson
SC-S80600 | Roland
VS300i | Roland
LEC2-330 | Kodak
Approval NX / Kodak
800XL Laminator | |--------------------------------------|---|--|---|---|---|---| | Additional technical equipment | | discontinued | | | | discontinued | | Colour measure-
ment | Spectro variant:
EPSON Spectroproofer
M0 / M1 / M2 (Mounter
+ ILS30EP) | - | - | - | - | _ | | Drying (after print) | optional active drying
by blower | - | material preheating
and print roller heating
post-print heating via
heated media plate
optional additional
drying (fan) | printer heating
post-print heating via
heated media plate
optional additional
drying (fan) | dual UV LED lamp
(faster ink curing) | _ | | Integrated proof
cutter | automatic cut after
print | automatic cut after
print | - | automatic cut after
print | automatic cut after
print | Ink and transfer foils in
sheet format – no auto-
matic cut after imaging
necessary | | Integrated contour
cutter | - | - | - | integrated cutting plot-
ter for contour cutting | integrated cutting plot-
ter for contour cutting
and creasing | - | | Pros and cons | | | | | | | | Colour measure-
ment/ calibration | + Inline colour
measurement for
automatic calibration
and proof verification | ⊖no inline colour
measurement; colour
measurements for
calibration and proof
verification must be
done manually | © no inline colour
measurement; colour
measurements for
calibration and proof
verification must be
done manually | © no inline colour
measurement; colour
measurements for
calibration and proof
verification must be
done manually | © no inline colour
measurement; colour
measurements for
calibration and proof
verification must be
done manually | ©density calibration
with external colour
measuring device;
no automatic proof
verification | | Inline finishing | + automatic cut Ono inline contour cutting, creasing or perforation | + automatic cut
⊖no inline contour
cutting, creasing or
perforation | ⊙ no automatic cut;
print jobs have to be
cut manually ⊙ no inline contour
cutting, creasing or
perforation | + automatic cut + integrated cutting plotter enabling a contour cut / die cut of labels or stickers | + automatic cut + integrated cutting plotter enabling a contour cut / die cut of labels or stickers | ⊙manual cutting
before or after lami-
nation if required ⊙no inline contour
cutting, creasing or
perforation | | Drying (after print) | +/© active drying by fan and adjustable drying time is sufficient for water-based inkjet printing (Inkjet foils have to dry out separately as the ink cannot penetrate the material – possibly very long drying times) + active drying leads to minor impairments in the print room; no heat or odour nuisance | ⊙long drying times after printing on foil (possibly 24h) + active drying leads to minor impairments in the print room; no heat or odour nuisance | + the strength and type of heating / drying can be adjusted very well to each individual material (shrink foils, for example, should be processed without the influence of heat, otherwise they will shrink; drying must mainly take place by means of a fan) Oadditional heat elements generate heat in the print room; fan ensures that the escaping solvent is distributed in the printing room; a separate, closed, air-conditioned room for the device is recommended | + the strength and type of heating / drying can be adjusted very well to each individual material (shrink foils, for example, should be processed without the influence of heat, otherwise they will shrink; drying must mainly take place by means of a fan) Oadditional heat elements generate heat in the print room; fan ensures that the escaping solvent is distributed in the printing room; a separate, closed, air-conditioned room for the device is recommended | + no additional drying units necessary © with UV inkjet, harmful molecules could be formed (e.g., ozone); UV inkjet printers require a suitable production environment and, if necessary, an air filtration or extraction system | + no additional drying units necessary | | | Epson
SC-P7000V (Spectro) | Epson
Stylus Pro WT7900 | Epson
SC-S80600 | Roland
VS300i | Roland
LEC2-330 | Kodak
Approval NX / Kodak
800XL Laminator | |---|--|--|---|---|---|---| | Technical data | | discontinued | | | | discontinued | | Measurements | 1,356 mm (W)
× 667 mm (D)
× 1,218 mm (H)
with stand | 1,356 mm (W)
× 667 mm (D)
× 1,218 mm (H)
with stand | 2,620 mm (W)
× 880 mm (D)
× 1,338 mm (H)
with stand | 1,700 mm (W)
× 795 mm (D)
× 1,270 mm (H)
with stand | 1,934 mm (W)
× 795 mm (D)
× 1,303 mm (H)
with stand | Kodak Approval:
1,930 mm (W)
× 890 mm (D)
× 1,780 mm (H) | | | | | | | | Kodak Laminator:
1,910 mm (W)
× 1,220 mm (D)
× 1,180 mm (H) | | Weight | 144 kg | 101 kg | 284 kg | 100 kg | 125 kg | Kodak
Approval: 817 kg | | | | | | | | Kodak
Laminator: 300 kg | | Noise (operational) | 47dB(A) | 47dB(A) | 59dB(A)
(without additional
drying fan) | 69dB(A)
(without additional
drying fan) | 63dB(A) | n/a | | Energy consump-
tion (operational) | ±65 W | ±60 W | n/a | ±670 W | ±290 W | n/a | | Printing speed | n/a | n/a | 95.1 m ² /h
(two heads) | n/a | n/a | Imaging time NX68:
4 full format proofs per
hour with 4 colours | | Thickness
(min. – max.) of
printing substrate | min. 0.08 mm –
max. 1.5 mm | min. 0.08 mm –
max. 1.5 mm | max. 1 mm | max. 1 mm with carrier (printing) | max. 1 mm with liner
(printing) | max. 7.5 mm (21pt) –
for lamination | | printing substrace | | | | max. 0.40 mm with
carrier and 0.22 mm
without carrier (cut) | max. 0.40 mm with
liner and 0.22 mm
without liner (cut) | | | Media handling | Roll and sheet fed | Sheet fed | | Pros and cons | | | | | | | | Weight and size | + comparatively small
and light printing
system | + comparatively small
and light printing
system | ⊖comparatively large
and heavy printing
system | + comparatively small
and light printing
system | ⊙comparatively large
and light printing
system | ⊙large and heavy printing system | | | + moderate operating
noise and low energy
consumption | + moderate operating
noise and low energy
consumption | ⊖noisy and high
energy consumption | | Speed | + normal printing
speed | + normal printing
speed | + high printing speed
(with 2 heads) | ⊙low printing speed | ⊙low printing speed | ⊙low printing speed
⊙two-step process (imaging and lamination) | | Maintenance | + low maintenance | ⊖high maintenance | + low maintenance
industrial and reliable
production system | ⊖high maintenance | ⊖high maintenance | ⊖high maintenance
and labour intense | | | 1 | | 1 | 1 | 1 | 1 |