CO₂: the future of aerosol

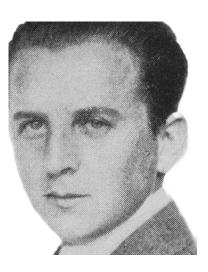
Visit us on booth U50 Paris Expo Porte de Versailles

28 & 29 January 2025

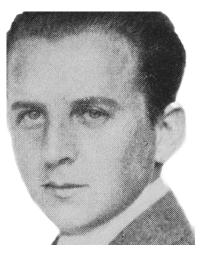
Budé & Me

- ◆40 years machine building One-of-a-kind
- ◆20 years in whipped cream aerosols
 Global market leader

◆2 years in "spreading the word"


CO₂: the future of aerosols

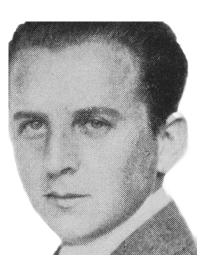
- ◆There is no denying it is happening
- ◆Technology will be critical in the transition
- **Nork** is needed



1927

Erik Rotheim, a Norwegian engineer filed the patent for *the aerosol dispenser*

1927



1987

The Montreal Protocol on Substances That Deplete the Ozone Layer

- No more CFC's
- Move to VOC's & Compressed gasses

1927 1987 2025

Reduces public exposure to the hazards associated with smog by banning the use of VOC's

1927 1987 2025 2027

"CO2 is gaining market share as the propellant of choice"

Propellants Compared

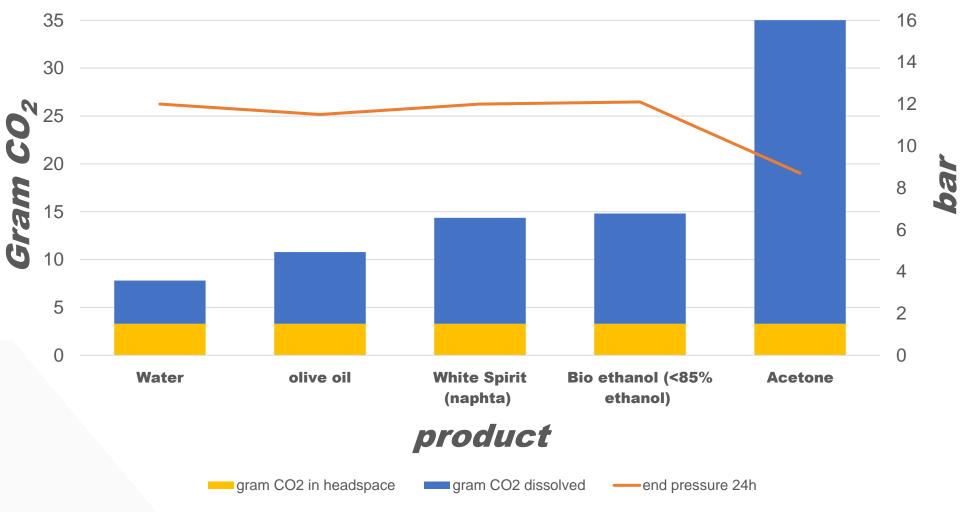
	Hydro Carbons	N2	CO ₂
VOC	Yes	No	No
Pressure drop	No	Yes	Some
Max Pressure	~ 7 bar	Limited by can	Limited by can
Hazardous	Yes	No	No
Reacts	No	No	Water
Solvability	Yes	No	Yes
Temperature drop	Yes	No	No

Propellants Compared

	Hydro Carbons	N2	CO ₂
VOC	Yes	No	No
Pressure drop	No	Yes	Some
Max Pressure	~ 7 bar	Limited by can	Limited by can
Hazardous	Yes	No	No
Reacts	No	No	Water
Solvability	Yes	No	Yes
Temperature drop	Yes	No	No

Propellants Compared

	Hydro Carbons	N2	CO ₂
VOC	(es	No	No
Pressure drop		Yes	Some
Max Pressure	~ ar	Limited by can	Limited by can
Hazardous		No	No
Reacts		No	Water
Solvability	ė	No	Yes
Temperature drop	/es	No	No


The CO₂ Principle

- **Sparkling water Sparkling water Sparkling**
 - CO2 is dissolved under pressure
 - 2. CO2 is released when opening
 - 3. Headspace pressure increases after closure

CO₂ Solvability (with shaking)

Gassing Technologies

- **►**Time-Over-Pressure
- **►**Impact
- **►**Time-Over-Pressure with *shaking*

Compared

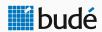
	Т-О-Р	Impact	Shaking
Fill pressure drop after gassing	Yes	Yes	No
Max Pressure	?	?	Can limit
Risk of buckling	No	Yes	No

Shaking – technology

- Filling and crimping as usual
- ► Dosing grams of gas (mass-flow meter)
- ◆Parameters to use:
 - Gas pressure
 - Shake time
 - Shake frequency

Why CO2/shaking

- ► More sustainable
- ◆Safer, in control process
- **►**Better performance
- Cost



Why Not

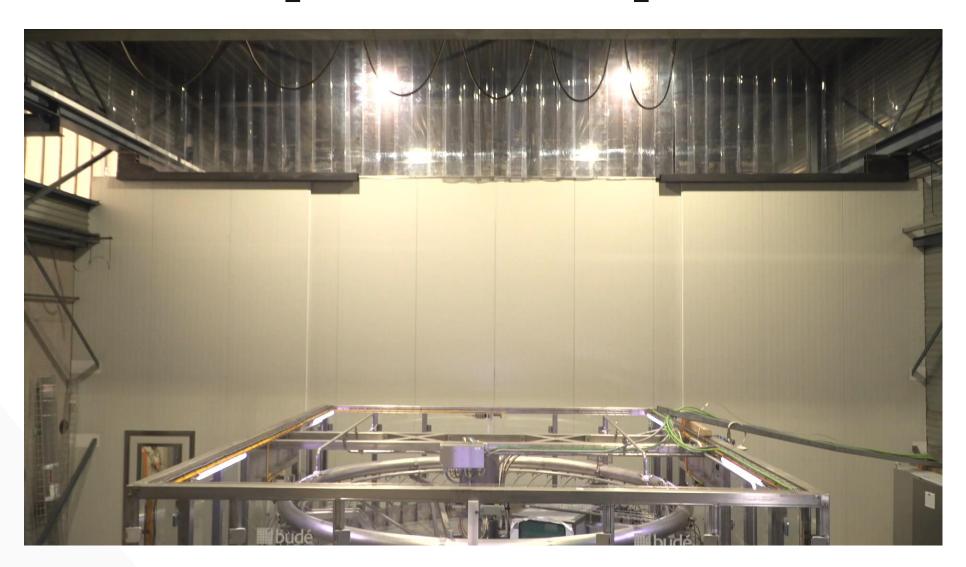
- ► Have done it before, did not work
- ◆Client is not asking
- **^**Contract filler says it is not possible
- **CO2** reduction?
- ►End product is different
- ► Market will not accept
- N need LPG as solvent
- ►It's not possible

Approach

- ► Max CO₂ at certain pressure
- **►**50C pressure
- ► Empty the can
- **►**Formulation
- ◆Valve & Actuator
- ► Market introduction

Together

- ◆Gassing technology
- Manufacturing knowledge
- **⋄**Component expertise
- ► Formulation knowledge


From 5 to 50 cpm

Up to 300 cpm

Applications

SOUDAL

CO₂ is happening!

- **►**But work is needed!
- ◆The shaking technology will be instrumental in the transition

The innovation that shakes your business

Thank you!

Visit us on booth U50 Paris Expo Porte de Versailles

28 & 29 January 2025