

Joining Competence Center (JCC)

Plan with more certainty and improve cost control for your joining processes

Contents

Absolute Attention for tomorrow's world

Kistler develops solutions for challenges in measurement technology with a portfolio that comprises sensors, electronics, systems and services. We push the frontiers of physics in fields such as emission reduction, quality control, mobility and vehicle safety: our products deliver top performance to meet the standards of tomorrow's world, providing the ideal basis for Industry 4.0. This is how we pave the way for innovation and growth – for our customers, and with our customers.

Kistler: the byword for advances in engine monitoring, vehicle safety and vehicle dynamics. Our products deliver data that plays a key part in developing efficient vehicles for tomorrow's world.

Measurement technology from Kistler ensures top performance in sport diagnostics, traffic data acquisition, cutting force analysis and many other applications where absolutely reliable measurements are required despite extreme conditions.

By supporting all the stages in networked, digitalized production, Kistler's systems maximize process efficiency and cost-effectiveness in the smart factories of the next generation.

Optimize and validate joining processes	
before commissioning	4
Features and technical data of the test workstation	5
A universal solution for every industry	6
Overview of NC joining modules	7
Well equipped for every application,	
overview of EOs (evaluation objects)	8
Structure of an electromechanical joining system	9
Service and applications backed by specialist expertise	10
At our customers' service across the globe	11

Industrial production never stops developing, so individual manufacturing processes have to meet ever-increasing requirements – and joining is a typical example. Joining processes are often performed in the automotive industry and many other sectors such as medical technology, white goods and the 3C market. Thanks to technology from Kistler, these processes can already be validated before the plant is commissioned.

Introducing new products or processes often involves challenges and uncertainties about production and assembly. But at the same time, manufacturers have to adhere to target development times and budgeted costs. To help customers achieve these goals, Kistler offers them the opportunity of using a test workstation for flexible validation of assembly and testing processes on parts such as bearings, sealing rings, rotor packages, bushings and springs.

The Kistler test workstation comprises a press frame with a wide selection of joining modules, together with a control cabinet containing the measurement and data acquisition technology. The workstation's adjustable mechanical structure gives users plenty of flexibility to install tools; process evaluation based on force and displacement is both variable and transparent thanks to the maXYmos NC process monitoring and control system.

Your advantages

- · Your joining processes are optimized and validated
- Measured values and process parameters are determined with high accuracy
- You save costs by avoiding over dimensioning
- You can plan your development work with greater certainty

Customer goals

- Validate the feasibility of joining processes
- Process development and optimization
- Determine and reduce cycle times

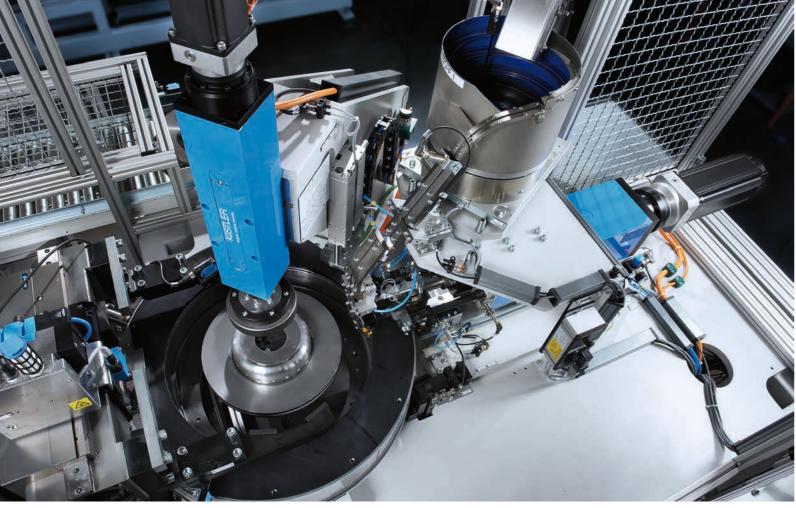
Customer benefits

- Minimized risks thanks to increased process knowledge
- Lower process design costs and faster commissioning
- Better product quality, more reliable planning and increased productivity

Force-displacement monitoring with maXYmos NC

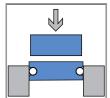
As tests are carried out on the workstation, the force and displacement sensing technology integrated into the joining module transmits the measurement data to maXYmos NC, the process monitoring and control system from Kistler.

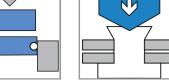
Features and technical data of the test workstation

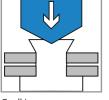

- Measurement range from a few newtons up to 100 kN
- Joining stroke: up to 400 mm
- Traverse speed: up to 700 mm/s
- Variable installation height up to 700 mm, depth up to 600 mm
- Mounting plate on movable table
- Process control with the maXYmos NC Sequence Editor
- Process evaluation based on a wide choice of different evaluation objects (EOs)
- Option to use external sensors
- Measurement results are exported in various data formats

Monitor the joining process with Kistler – watch online now! View our animation to experience convincing first-class solutions from Kistler – the surest route to 100 percent quality

in your production: www.kistler.com/nc-joining

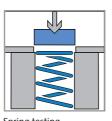


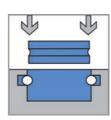


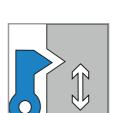

Application for riveting a lightweight brake disk with the help of force-displacement monitoring

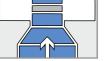
A universal solution for every industry

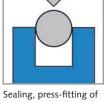
Joining processes are performed in many sectors, ranging from the automotive, electrical and electronic industries to medical technology and watchmaking. Engineers make use of a vast range of joining techniques such as press-fitting, caulking, clipping or rolling – and joining systems from Kistler can test and optimize all of these processes prior to commissioning on the machine.

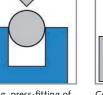


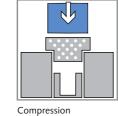


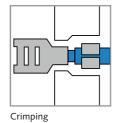


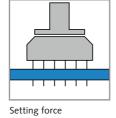


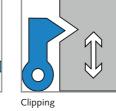


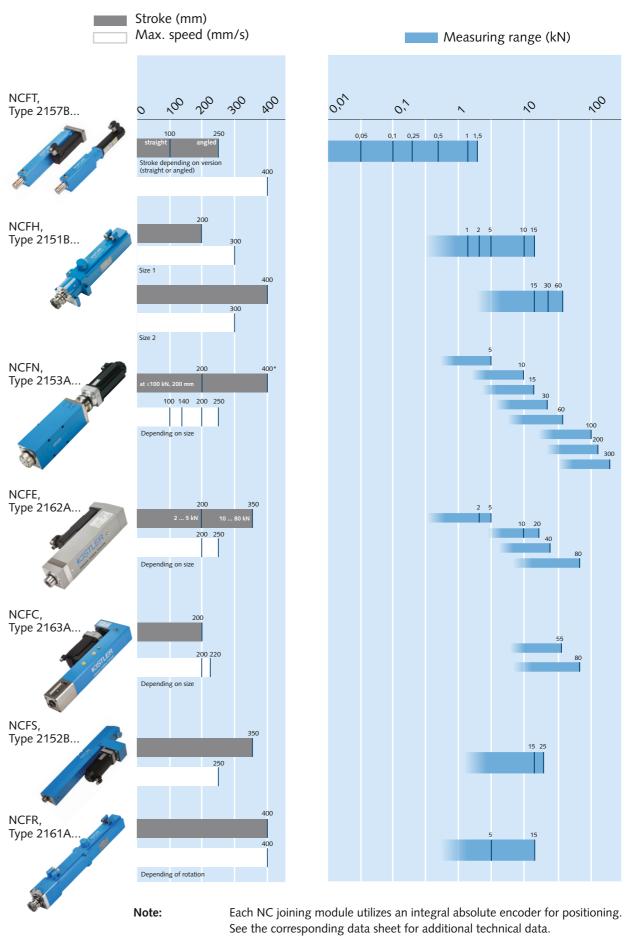




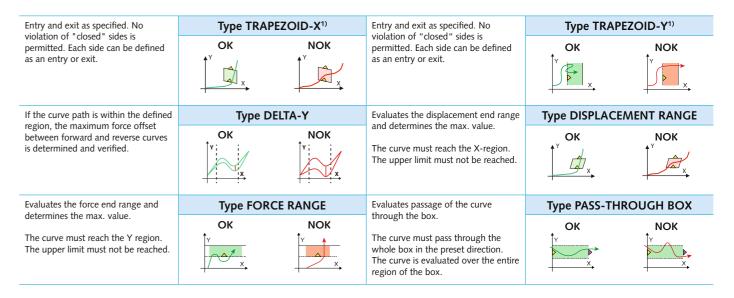

Embossing



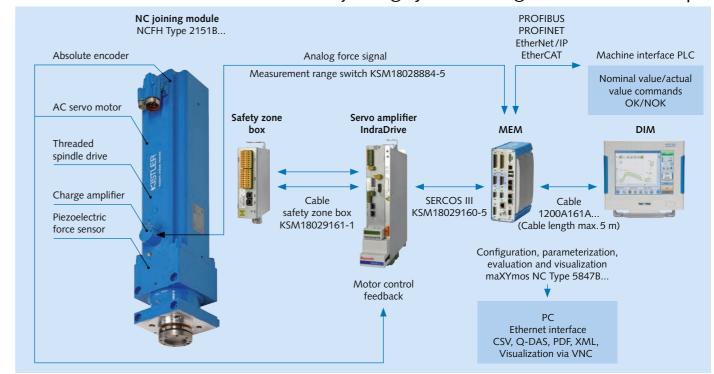

ball bearings



Overview NC Joining Modules


^{*} Special versions with a stroke of up to 1,000 mm, max. force range of 600 kN or angled design are available on request

Well equipped for every application

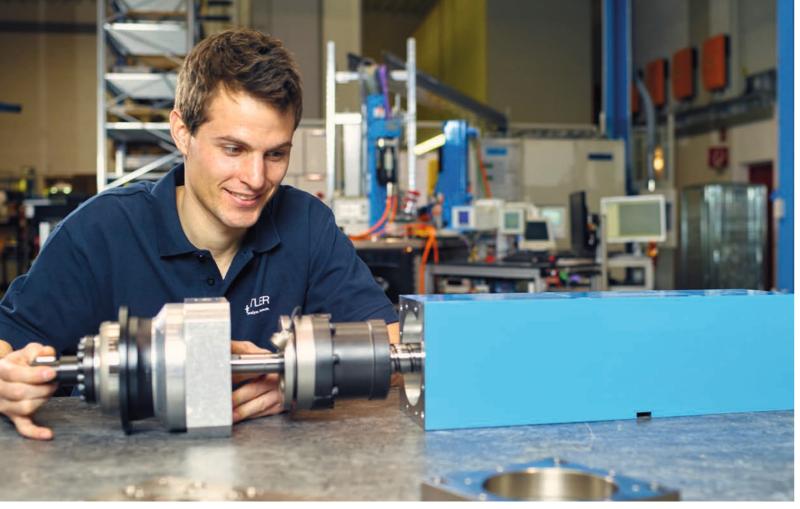

Users can choose from a wide range of evaluation objects (EOs) to assess the joining process. Every process – no matter how simple or complex – can be evaluated with up to ten different

EOs. Setting and teaching the EOs is fast and straightforward, either on a PC or via touchscreen.

The line must not be crossed. Otherwise: NOK and NO-PASS real-time signal.	Type NO-PASS	Entry and exit as specified. No	Type UNI-BOX	
	OK NOK	violation of "closed" sides is permitted. Each side can be defined as an entry or exit.	OK NOK	
	* x		X, X	
The line must be crossed once. Monitoring of an X-value at the point of intersection.	Type LINE-X	The line must be crossed once in a specified direction. Monitoring of a	Type LINE-Y	
	OK NOK	Y-value at the point of intersection.	OK NOK	
The measured curve must not violate the upper and lower lines of the envelope curve band. This evaluation object is quickly learned thanks to trend tracking.	Type ENVELOPE CURVE Box detects significant curve features		Type GET-REF	
	OK NOK	and their XY coordinates in the expectancy range. These can be used as reference points for other EOs or as an input for the CALC object.	Y X1 X2 Y1 X2 Y2 X	
The object references two selectable	Type CALC (CALCULATION)	The evaluation criterion is the speed	Type SPEED	
process values and performs calculations and evaluations with them, e.g. to calculate the X-difference between two ripples.	OK NOK Y X2-X1=NO	between the entry and exit points in a special box.	OK NOK	
Evaluates gradient dX/dY between two horizontal lines.	Type GRADIENT-X	Evaluates gradient dX/dY between two vertical lines.	Type GRADIENT-Y	
two nonzontal lines.	OK NOK	two verucai lines.	OK NOK	
Evaluates the X-hysteresis between a forward and a reverse curve on a horizontal line.	Type HYSTERESIS-X	Evaluates the Y-hysteresis between a forward and a reverse curve on a	Type HYSTERESIS-Y	
	OK NOK	vertical line.	OK NOK ×	
Entry and exit as specified. A violation of the closed sides delivers	Type TUNNELBOX-X	Entry and exit as specified. A violation of the closed sides delivers a	Type TUNNELBOX-Y	
violation of the closed sides delivers a real-time signal and stops the sequence.	01/ 1/01/	real-time signal and stops the sequence.		
sequence.	OK NOK		OK NOK	
The evaluation criterion is the time	Y NIO	sequence. Evaluates the average of all Y-values	Y NIO	
·	Y NIO Y NIO X	sequence.	Y NIO X X	
The evaluation criterion is the time between the entry and exit points in a special box. Generates NOK and online signal in	Type TIME	Evaluates the average of all Y-values in the box region. A defined gradient change is	Type AVERAGE OK NOK	
The evaluation criterion is the time between the entry and exit points in a special box.	Type TIME OK NOK V X X	Evaluates the average of all Y-values in the box region.	Type AVERAGE OK NOK V X X	
The evaluation criterion is the time between the entry and exit points in a special box. Generates NOK and online signal in case of sudden gradient change within an expectancy range (box), e.g. in case of tool breakage, and	Type TIME OK NOK Type BREAK	Evaluates the average of all Y-values in the box region. A defined gradient change is expected inside the box and can be used as a further switching condition	Type AVERAGE OK NOK Type BEND (INFLEXION)	

Structure of an electromechanical NC joining system, using NCFH as an example

 $Operating \ principle \ of \ an \ NC \ joining \ system \ with \ NC \ joining \ module \ NCFH, \ Type \ 2151B... \ and \ maXYmos \ NC, \ Type \ 5847B...$


Sequencer mode

The maXYmos NC controls the NC joining module via the servo amplifier with the help of integrated sequence control (sequencer mode). An independent sequence can be defined for each of the programs. The sequence can be configured freely with the help of the elements described here. Measurement and evaluation take place in the main routine. The three sub-routines can be used to define other sequences and execute them independently of the main routine. A total of up to 255 elements can be placed per program.

Q-DAS is registrated trademark of the Q-DAS GmbH. VNC is a registered trademark of RealVNC Ltd.

An independent sequence can be defined for each of the programs (up to 128 in number).

From professional advice on all aspects of joining to speedy deliveries of spare parts: Kistler's comprehensive range of services and training is at your disposal across the globe.

Service and applications backed by specialist expertise

Kistler delivers premium services that correspond to Kistler's high-quality product solutions and are optimally coordinated with each other.

Take advantage of the strengths of Kistler's Joining Competence Center (JCC) to avoid increased commissioning costs or achieve lasting optimization of your production.

As well as performing tests, our joining system experts will work with you anywhere in the world to analyze your processes and identify improvements or new possibilities for your production facility. Precise measurement values are the essential basis for evaluating joining processes to achieve the right quality and optimal costs – for example, by avoiding unnecessary over dimensioning of plants and systems.

You're welcome to contact the Joining Competence Center directly with your inquiries – simply email us at Service@kistler.com.

Our experienced specialists in validating assembly processes will be happy to advise you – we'll accompany you on your journey towards increased productivity, improved quality and process reliability in production.

JCC offers these services:

- Advisory support and system selection
- Process simulation and determination of cycle time
- · Practical tests, including evaluation
- Process analysis and optimization

Kistler service at a glance

- Consultation
- Support during the commissioning of systems
- Process optimization
- Periodic onsite calibration of sensors
- Education and training events
- Development services

Your reliable partner throughout the entire life cycle

Who knows their products better than the manufacturer? Original Service from Kistler is the comprehensive service solution directly from the world market leader in dynamic measurement technology. We deliver service quality on a par with our proven products and system solutions. At the same time, we offer graduated service packages to provide you with the right solution for your needs.

Installation

Kistler ensures that your solution is ready to operate on site. We support you through the installation process; we make sure that the joining system is optimally configured on commissioning, and we determine the parameters for the maXYmos process monitoring system. Our qualified professionals support you with their know-how so you select the right solution, and they assist you with on-site instruction for technical staff.

- Joining Competence Center
- Installation
- Commissioning

Reactive maintenance

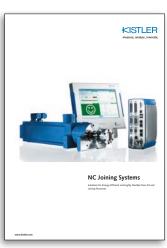
Kistler is excellently equipped and always ready to respond to emergencies and unscheduled plant outages. We offer rapid response times and straightforward solutions for common problems in industrial production processes – and we will assist you on site if need be.

- Rapid response 24/7 (hotline)
- Access to emergency stock
- Unscheduled maintenance

Preventive maintenance

Precise measurement solutions are the only guarantee of errorfree production. Regular inspections, calibrations and machine capability analyses (MCA) also ensure long-term protection for your investment and a high level of process reliability. Periodic maintenance and lubrication are the reliable way to reduce downtime and error rates to the minimum.

- Inspection
- Calibration
- Scheduled maintenance


Operation and improvement

When it comes to joining system solutions, our experts have a wealth of technical know-how – so they can support you with optimizing your plant. The machine capability analysis (MCA) of your joining system is the basis for a detailed examination of the measuring chain to boost your plant's performance. To ensure that joining systems are handled reliably, we offer training in the classroom and directly on the machine.

- Training
- Advisory support
- Optimization

Kistler Group

Eulachstrasse 22 8408 Winterthur Switzerland Tel. +41 52 224 11 11

Kistler Group products are protected by several intellectual property rights. For more details see www.kistler.com. Kistler Group includes the Kistler Holding AG and all its subsidiaries in Europe, Asia, Americas and Australia.

Find your local contact on www.kistler.com

