

Baureihe WP

NIDEC DRIVE TECHNOLOGY CORPORATION

Untersetzungsgetriebe mit eingebautem Multi-Sensor

Smart-FLEXWAVE

Integrierte Multi-Sensor-Getriebe maximieren Ihre Produktions- und Automatisierungskapazitäten.
Mit ihrem kompakten, leichten Design fügen sie sich nahtlos in anspruchsvollste Anwendungen ein und sparen dabei wertvollen Einbauraum.

01 DREHMOMENT SENSOR

Die Leistung Ihres Systems wird durch eine genaue Messung des Ausgangsdrehmoments am Getriebe optimiert. UZ
TEMPERATUR
SENSOR

Durch die kontinuierliche Überwachung der Getriebetemperatur wird die Beständigkeit Ihres Systems verbessert. 03 /inkei

WINKEL SENSOR

Der Drehmomentsensor erreicht eine hochgenaue Drehmomentmessung durch Winkelkompensation.

Eingebauter Multisensor

Konventionelle Lösung

Smart-FLEXWAVE

- 1 Geringes Gewicht
- 2 Platzsparend
- 3 Kostengünstig
- 4 Hohe Steifigkeit

Konventioneller Aufbau

- Schweres Gewicht
- 2 Große Bauweise
- 3 Teuer
- 4 Geringe Steifigkeit

Duales System + Kollaborative Roboter

Baureihe WP

Das zweikanalige Multisensorsystem für kollaborative Roboter gewährleistet ein hohes Maß an Sicherheit für den Bediener. Der Multidrop-Anschluss ermöglicht den Anschluss von bis zu 8 Achsen bei vereinfachter Verkabelung.

Multisensor

MCU

Kommunikation

Antwort

LOGIK A

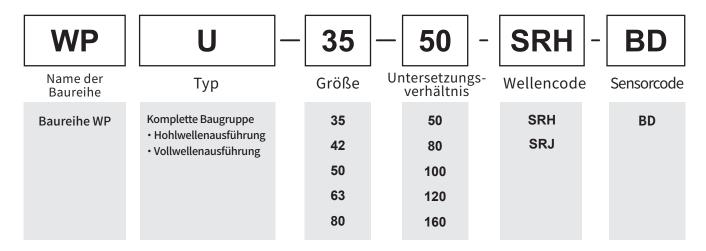
MCU A und B
Gegenseitige Diagnose

Befehl

LOGIK B

AUSGABE B

Entwickelt für vertrauensvolle Sicherheit


Das Smart-FLEXWAVE BD-Modell entspricht als Sicherheitsdrehmomentsensor den funktionalen Sicherheitsstandards für Industrieanlagen und hat die Sicherheitszertifizierung der Zertifizierungsstelle TÜV SÜD erhalten.

Anwendbare Standards: EN ISO 13849-1:2023 IEC 61508: 2010 EN IEC 62061: 2021

Hinweis: Die Integration dieses Produkts in Ihr Gesamtsystem der Maschine gewährleistet nicht, dass die wesentlichen Anforderungen der Normen zur funktionalen Sicherheit erfüllt werden.

Modellnomenklatur

Verfügbarkeit

•					
Untersetzungsverhältnis Baugröße	50	80	100	120	160
35					
42					
50					
63					
80					

Getriebespezifikation

		* 1	* 2	* 3	* 4	* 5	* 6
Größe	Untersetzungs- verhältnis	Nenn - ausgangs- drehmoment	Max. Ausgangs - drehmoment	Notstopp- Drehmoment	Nenneingangs - drehzahl	Max. Eingangs - drehzahl	Lebensdauer
		[Nm]	[Nm]	[Nm]	[U/min]	[U/min]	[Std.]
		7	23	46			
35		10	30	61	3000	8500	
		10	36	70			
		21	44	91			
42		29	56	113	3000	7300	
42	100	31	70	143	3000	7300	
		31	70	112			
		33	73	127			7692
		44	96	165			
50		52	107	191	3000	6500	
	120	52	113	191			
		52	120	191			1032
		51	127	242			
		82	178	332			
63		87	204	369	3000	5600	
	120	87	217	365			
		87	229	408			
		99	281	497			
		153	395	738			
80		178	433	841	3000	4800	
	120	178	459	892			
	160	178	484	892			

^{*~1~} Der maximal zulässige Wert bei einer Eingangsdrehzahl von 2000 U/min. ~*~4~ *~2~ Das maximale Drehmoment beim Starten und Stoppen. ~*~5~

Die maximale Eingangsdrehzahl.

^{* 3} Das maximale Drehmoment bei Stoßbelastung.

Die maximale durchschnittliche Eingangsdrehzahl.

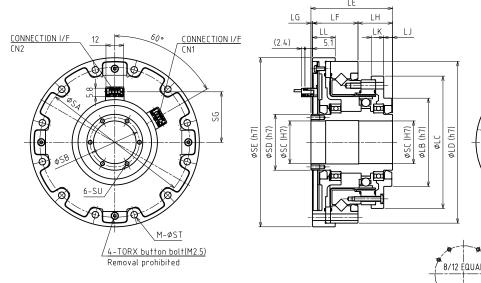
Die Lebensdauer bei einer Eingangsdrehzahl von 2000 U/min und einem Nennausgangsdrehmoment.

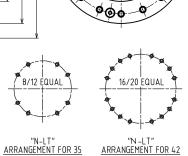
Sensor Spezifikationen

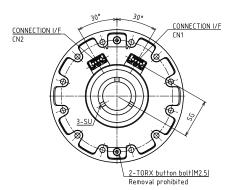
Sensortyp	Artikel	Spezifikation	Bemerkungen
	Nenndrehmoment	Entspricht dem maximalen Drehmoment des Getriebes	
	Begrenztes Drehmoment	Entspricht dem Not-Aus-Drehmoment des Getriebes	
	Haltbarkeit	Konform, mit der des Getriebes	
	Nichtlinearität	± 3 % FS oder weniger	Bereich bis zum Nenndrehmoment
Drehmomentsensor	Hysterese	3 % FS oder weniger	Bereich bis zum Nenndrehmoment
	Achsenübergreifende Empfindlichkeit	± 1 %FS oder weniger	Bereich bis zum Moment des Getriebes
	Maximaler Messbereich	Bestimmt durch die Größe des Getriebes	Siehe beigefügte Tabelle
	Auflösung	-2000d bis +2000d	LSB: Siehe beigefügte Tabelle
	Eingehaltene Normen (Funktionale Sicherheit)	PLd, Kategorie 3 /EN ISO13849-1: 2023 SIL2 /IEC 61508: 2010 maximal SIL2 /EN IEC 62061:2021	
	Genauigkeit	± 5°C	
Temperatursensor	Messbereich	0°C bis 80°C	
	Auflösung	0 bis 800d	LSB: 0.1°C
	Versorgungsspannung	24V DC+10%/15%	
	Versorgungsstrom	0,06 A oder weniger	
Allgemein	Kommunikationsmethode	2-Draht RS-485	
	Baudrate	3,0 Mbit/s	
	Betriebstemperaturgrenze	0°C bis 80°C	

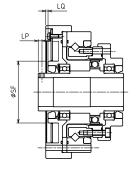
Sensormessbereich

			*1	* 2	
Größe	Übersetzungsverhältnis	Nenndrehmoment	Maximaler Messbereich	LSB	
Gloise	Obersetzungsvernatuns	[Nm]	[Nm]	[Nm]	
	50	23			
35	80	30	± 50	0.025	
	100	36			
	50	44			
42	80	56	± 100	0.05	
72	100	70	± 100	0.03	
	120	70			
	50	73			
	80	96			
50	100	107	± 150	0.075	
	120	113			
	160	120			
	50	127			
	80	178			
63	100	204	± 300	0.15	
	120	217			
	160	229			
	50	281			
	80	395			
80	100	433	± 600	0.3	
	120	459			
	160	484			


 $[\]pm$ 1 "+ "-Zeichen zeigt Drehmoment im Uhrzeigersinn (CW) an. \pm 2 LSB ist eine Abkürzung für Least Significant Bit.


SRH Hohlwellenausführung

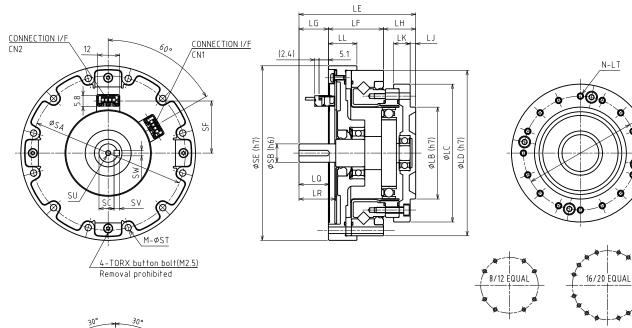

WPU- □ - □ -SRH-BD



N-LT

Größen 35 & 42

Cräßon	Gewicht	Trägheitsmoment
Größen	kg	×10⁴kgm²
35	0.78	0.0924
42	1.05	0.207
50	1.4	0.408
63	2.1	1.06
80	4.2	2.72


													[mm]
Größen	LA	LB	LC	LD	LE	LF	LG	LH	LJ	LK	LL	LP	LQ
35	44	36	54	70	52.5	27.5	5	20	7.5	8	16	2.5	1.5
42	54	45	64	80	56.5	30	5	21.5	8.5	8.5	17	2.5	1.5
50	62	50	75	90	51.5	30	0	21.5	7	9	15.5	-	-
63	77	60	90	110	55.5	31	1	23.5	6	8.5	15.5	-	-
80	100	85	115	142	65.5	37	2	26.5	5	9.5	17	-	-

Größen	SA	SB	SC	SD	SE	SF	SG	М	ST	SU	N	LT
35	64	_	14	20	78	36	21.6	8	3.5	М3	8	M3 \times 5, φ 3.5 \times 11.5
42	74	-	19	25	88	41	25.8	12	3.5	М3	16	M3 \times 6, φ 3.5 \times 12
50	84	25.5	21	30	95	-	28.3	12	3.5	M3 × 6	16	$M3 \times 6$, φ 3.5×13.5
63	102	33.5	29	38	115	-	34.3	12	4.5	M3 × 6	16	M4 \times 7, φ 4.5 \times 15.5
80	132	40.5	36	45	147	-	42.9	12	5.5	M3 × 6	16	M5 \times 8, φ 5.5 \times 20.5

SRJ Vollwellenausführung

WPU- □ - □ -SRJ-BD

CONNECTION I/F CN2 CONNECTION I/F CN1 CONNECTION I/F CN1	
--	--

Größen 35 & 42

Cräfton	Gewicht	Trägheitsmoment			
Größen	kg	×10 ⁻⁴ kgm²			
35	0.71	0.0266			
42	0.96	0.0666			
50	1.4	0.155			
63	2.1	0.382			
80	4.1	1.28			

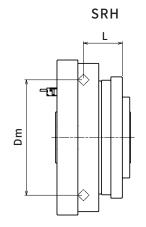
"N-LT" ARRANGEMENT FOR 42

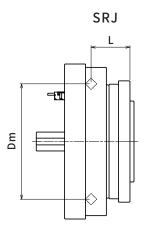
"N-LT" ARRANGEMENT FOR 35

														[mm]
Größen	LA	LB	LC	LD	LE	LF	LG	LH	LJ	LK	LL	LP	LQ	LR
35	44	36	54	70	50.5	27.5	8	15	2.5	8	16	11	-	-
42	54	45	64	80	56	30	10	16	3	8.5	17	12	-	-
50	62	50	75	90	63.5	30	16	17.5	3	9	15.5	-	16.5	20
63	77	60	90	110	72.5	31	21	20.5	3	8.5	15.5	-	22.5	25
80	100	85	115	142	84.5	37	21	26.5	5	9.5	17	-	22.5	25

Größen	SA	SB	SC	SE	SF	SV	SW	М	ST	SU	N	LT
35	64	6	_	78	21.6	-	-	8	3.5	-	8	M3 \times 5, ϕ 3.5 \times 11.5
42	74	8	-	88	25.8	-	-	12	3.5	-	16	$M3 \times 6$, $\varphi 3.5 \times 12$
50	84	10	8.2	95	28.3	3	3	12	3.5	M3×6	16	M3 \times 6, φ 3.5 \times 13.5
63	102	14	11	115	34.3	5	5	12	4.5	M5 × 10	16	M4 \times 7, ϕ 4.5 \times 15.5
80	132	14	11	147	42.9	5	5	12	5.5	M5×10	16	M5 \times 8, ϕ 5.5 \times 20.5

Lebensdauerberechnung


■ Hauptlagerspezifikation (Kreuzrollenlager)


Ausführung		Teilkreisdurchmesser der Lagerrollen	Abstand	Dynamische Tragzahl	Statische Tragzahl	Zulässiges Moment	Momentsteifigkeit
	Größen	Dm	L	С	Со	Mal	Km
		m	m	N	N	Nm	×10⁴Nm/rad
	35	0.0500	0.0217	5800	8600	74	8.5
	42	0.0600	0.0239	10400	16300	124	15.4
WPU-□-□-SRH WPU-□-□-SRJ	50	0.0700	0.0255	14600	22000	187	25.2
	63	0.0850	0.0296	21800	35800	258	39.2
	80	0.111	0.0364	38200	65400	580	100

Lebensdauer des Hauptlagers

■ Beispiel für einen Betriebszyklus

Externe Last

Lebensdauerberechnung (Hauptlager)

①Berechnungsformel für das höchste Arbeitsmoment

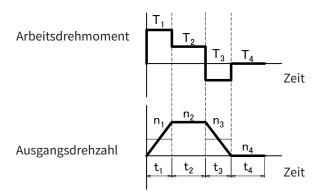
Spitzenmoment	Mm	Nm	Nm $Mm = Frm \cdot (Lr + L) + Fam \cdot La$			
Spitzenradialkraft	Frm	N	$Frm = Gr\"{o}$ ßte unter $Fr_1, Fr_2 \cdots Fr_n$			
Spitzenaxialkraft	Fam	N	Fam= Größte unter Fa₁, Fa₂, ··· Faₙ			

Bitte stellen Sie sicher, dass das Spitzenmoment unter dem maximal zulässigen Moment liegt.

②Berechnungsformel für die durchschnittliche Radiallast, die durchschnittliche Axiallast, die durchschnittliche Ausgangsdrehzahl und das durchschnittliche Arbeitsmoment

Durchschnittliche Radialkraft	Fra	N	$Fra = \sqrt[10/3]{\frac{n_1 \cdot t_1 \cdot Fr_1 ^{10/3} + n_2 \cdot t_2 \cdot Fr_2 ^{10/3} + \dots + n_n \cdot t_n \cdot Fr_n ^{10/3}}{n_1 \cdot t_1 + n_2 \cdot t_2 + \dots + n_n \cdot t_n}}$
Durchschnittliche Axialkraft	Faa	N	$Faa = \sqrt[10/3]{\frac{n_1 \cdot t_1 \cdot Fa_1 ^{10/3} + n_2 \cdot t_2 \cdot Fa_2 ^{10/3} + \dots + n_n \cdot t_n \cdot Fa_n ^{10/3}}{n_1 \cdot t_1 + n_2 \cdot t_2 + \dots + n_n \cdot t_n}}$
Durchschnittliche Abtriebsdrehzahl	nao	U/min	$nao = \frac{n_1 \cdot t_1 + n_2 \cdot t_2 \cdot \cdots n_n \cdot t_n}{t_1 + t_2 + \cdots + t_n}$
Durchschnittliche Arbeitsmoment	Ма	Nm	Ma = Fra • (Lr + L) + Faa • La

③Berechnungsformel für den Belastungsfaktor, äquivalente Radiallast


Belastungsfaktor	Xc, Yc		Bei $\frac{Faa}{Fra + 2Ma / Dm} \le 1.5 Xc = 1.0, Yc = 0.45$		
			Bei $\frac{Faa}{Fra + 2Ma / Dm} > 1.5 Xc = 0.67, Yc = 0.67$		
Äquivalente Radialkraft	Pc	N	Pc= Xc • (Fra + 2Ma/Dm) + Yc • Faa		

4 Lebensdauer des Hauptlagers

Lebensdauer des Hauptlagers	Lhc	h	$Lhc = \frac{10^6}{60 \cdot nao} \cdot \left(\frac{C}{fw \cdot Pc}\right)^{\frac{10}{3}}$
Stoßfaktor	fw		1.0 : keine Erschütterung
			1.2: mit etwas Erschütterung
			1.5: mit Erschütterung und Vibration

Lebensdauer (elastisches Lager)

■ Beispiel für einen Betriebszyklus

① Berechnungsformel für das Abtriebsdrehmoment

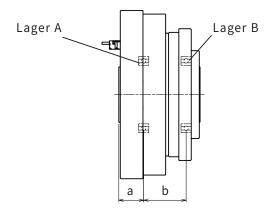
Durchschnittliches Ausgangsdrehmoment	Tao	Nm	$Tao = \sqrt[3]{\frac{n_1 \cdot t_1 \cdot T_1 ^3 + n_2 \cdot t_2 \cdot T_2 ^3 + \dots + n_n \cdot t_n \cdot T_n ^3}{n_1 \cdot t_1 + n_2 \cdot t_2 \cdots n_n \cdot t_n}}$
Spitzenwert des Abtriebsdrehmoment	Tmo	Nm	$Tmo = am \ gr\"{o}$ ßten unter $T_1, T_2, \cdots T_n$

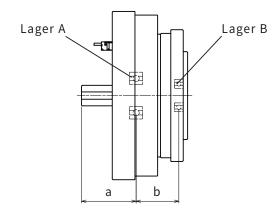
Bitte stellen Sie sicher, dass das Spitzenausgangsdrehmoment unter dem maximalen Ausgangsdrehmoment in der Spezifikationstabelle liegt.

② Berechnungsformel für die Eingangsdrehzahl

Durchschnittliche Abtriebsdrehzahl	nao	U/min	$nao = \frac{n_1 \cdot t_1 + n_2 \cdot t_2 \cdots n_n \cdot t_n}{t_1 + t_2 + \cdots + t_n}$		
Spitzenausgangsdrehzahl	nmo	U/min	$nmo = am größten unter n_1, n_2, \cdots n_n$		
Durchschnittliche Eingangsdrehzahl	nai	U/min	$nai = nao \times R$ (R = Übersetzungsverhältnis)		
Spitzeneingangsdrehzahl	nmi	U/min	$nmi = nmo \times R$ (R = Übersetzungsverhältnis)		

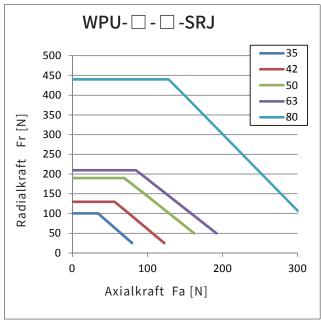
Bitte stellen Sie sicher, dass der Wert der Spitzeneingangsdrehzahl unter der maximalen Eingangsdrehzahl in der Spezifikationstabelle liegt.


③ Berechnungsformel für die Lebensdauer


Bauteillebensdauer für das elastische Lager	Lhe	h	$Lhe = 7692 \times \left(\frac{Tar}{Tao}\right)^{3} \times \left(\frac{nar}{nai}\right)$			
Nenndrehmoment	Tar	Nm	Nennausgangsdrehmoment in der Spezifikationstabelle			
Nenneingangsdrehzahl	nar	U/min	2000 U/min			

Maximale Belastung an der Eingangswelle

■ Lagerspezifikation (offener Typ, komplette Baugruppe)


		Lag	er A	Lag			
Ausführung	Größen	Dynamische Tragzahl	Statische Tragzahl	Dynamische Tragzahl	Statische Tragzahl		b
	С	Со	С	Со			
		N	N	N	N	mm	mm
35 42 WPU-□-□-SRH 50 63 80	4000	2470	4000	2470	16.5	26.5	
	42	4300	2950	4300	2950	17.5	29.5
	50	4500	3450	4500	3450	16	26
	63	4900	4350	4900	4350	17	29
	80	14100	10900	5350	5250	20	35.5
	35	2240	910	1080	430	24.5	21
WPU-□-□-SRJ	42	2700	1270	1610	710	27.5	23
	50	4350	2260	2240	910	32.3	25.2
	63	5600	2830	2700	1270	37.3	29.2
	80	9400	5000	4350	2260	39.4	38.1

Maximale Belastung (durchschnittliche Eingangsdrehzahl: 2.000 U/min, Lebensdauer: 10.000 Stunden)

Anwendung

* Dieses Anwendungsbeispiel ist nicht im Umfang der Sicherheitszertifizierung enthalten.

Kollisionserkennung/ Überlastüberwachung Überwachung des Drehmoments beim Schraubenanzug

Kompensation der Armwärme/ Überhitzungsüberwachung

Roboter-Stoppposition/ Winkelüberwachung

* Bitte konsultieren Sie uns.

Netzwerküberwachungssystem Arm

YouTube

@NIDEC DRIVE TECHNOLOGY

Instagram

@desch_group

Europa

LinkedIn

@DESCH Group Europa

@NIDEC DRIVE TECHNOLOGY AMERICA

NIDEC DRIVE TECHNOLOGY CORPORATION

(Webseiteninformationen)

Kontaktieren Sie uns

https://www.nidec.com/en/ nidec-drivetechnology/inquiry/

Verkaufsbüros

https://www.nidec.com/en/ nidec-drivetechnology/corporate/ network/sales/