(1) CONVEYOR VAV
 Conveyor components and solutions CHAINS

There are two types of conveyor chains:
$\sqrt{ }$ Drop forged chain
$\sqrt{ }$ Double drag link chain DIN 8165-FV and DIN 8167-M

VAV supplies different versions of both types and can deliver the optimum conveyor chain for any purpose.

The chains can be equipped with plastic, welded, or bent scrapers (or a combination).

Supplier of spare parts for the bulk handling industry

Drop forged chain

The drop forged chains supplied by VAV are made of heat treated high grade alloy steel. The links can be equipped with plastic flights and/or steel scrapers. The following table shows various types of drop forged chains ex stock, together with the respective breaking loads and core/surface hardness.

Drop forged chain (parameters in mm)								
Pitch	A	B	C1	C2	D	E	Breaking loads available ex stock	
							58 HRC Case hardened	Q\&T 40 HRC
102	32	10	14	15	36	18	150 kN	
102	27	11	12	13	36	16		170 kN
102	30	8	13	13,5	36	14		140 kN
102	24	6	8	9	36	14	100 kN	
125	36	10	15	16	36	16		140 kN
142	42	13	19	20	50	25	250 kN	350 kN
142	54	16	25	26	50	25	300 kN	380 kN
142	62	15	29	30	50	25	350 kN	600 kN
150	36	13	15	16	50	25		200 kN
150	36	13	15	16	50	25		300 kN
150	36	13	15	16	50	25		400 kN
160	42	13	20	21	46	20		300 kN
160	50	14	25	26	50	25	300 kN	380 kN
175	62	15	29	30	50	25		600 kN
200	68	18	30	31	60	30	500 kN	
200	70	24	30	31	60	30		700 kN
250	70	20	30	33	70	32		750 kN
260	70	20	30	33	70	32	600 kN	

Materials: 20MnCr5, 42CrM04, Stainless steel 304/316, 1.4713. The breaking load depends on the choice of material.

Pins

Pins are available in different executions and the following materials:
$16 \mathrm{MnCr} 5,42 \mathrm{CrMo4i}, 1.4034 \mathrm{i}, 1.4122 \mathrm{i}, 1.4462,1.4713$. Other materials are available on request.

Examples of drop forged chain with scrapers

VAV can supply all kinds of scrapers. Whether it is horizontal, inclined or vertical transport, there is a special version for every type of transport and a solution for every capacity. Below you will find a number of examples of steel scrapers and plastic flights.

Horizontal transport

"U" scraper for inclined transport

"U" scraper with welded plates

" O " scraper for vertical transport

Double drop forged chain scraper

Easy to (dis)assemble plastic flights

DIN-chains in stock

VAV does not recommend an "own" type of chain. Capacity, type of bulk material, situation on site, and price / quality ratio determine the advice of our technicians. That is why VAV stocks a large number of double drag link chains and sprockets in various sizes.

These chains can be custom-made, with a short delivery time, with plastic flights and/or steel welded scrapers. The standard pins are fitted with a circlip (unless otherwise stated). An overview of the chains available from stock can be found in the table below.

Pitch	Inner	Bush/pin	Plates	Breaking load
(p)	width (b1)	$\emptyset(\mathrm{d} 1 / \mathrm{d} 2)$	($\mathrm{x} \times \mathrm{s}$)	in kN
80	22	**18/12	30×4	63
80	25	20/14	35×5	90
80	25	*20 / 14	35×6	110
80	25	*20/14	35×8	110
80	30	$22 / 16$	40×6	112
80	35	$30 / 20$	50×8	180
100	22	18/12	30×4	63
100	25	20/14	35×5	90
125	25	20/14	35×5	90
125	30	$22 / 16$	40×6	112
125	32	**21 / 15	40×6	112
125	30	26/18	45×6	140
125	35	26/18	45×6	140
125	30	$30 / 20$	50×8	180
125	45	30/20	50×8	180
150	30	$22 / 16$	50×6	112
150	52	25/18	50×8	140
150	45	$30 / 20$	50×8	180
150	55	36/26	50×8	250
160	30	$30 / 20$	50×8	180
160	37	**25 / 18	50×7	160
160	45	$30 / 20$	50×8	180
160	55	$36 / 26$	60×10	250

* Splitpin execution
** Revited execution

DIN 8165 - FV

Double drag link chains according to DIN 8165 (FV) and DIN 8167 (M) are available with connecting pins in a circlip, split pin and riveted version. The steel scrapers can be L-shape bent, welded and / or bolted with plastic profiles. It is also possible to attache special VAV plastic scrapers on every outside link. The chains can also be fitted with rollers. Delivery in different materials, (inductive) hardened is possible on request.

DIN 8165 - FV - Double drag link chain (parameters in mm)

Breaking load in kN Inner width (b1) Bush Ø (d2) Pin Ø (d1) Plate height (h) Plate thickness (s) Small roller (d3) Large roller (d4) A-symmetric (d5/d6) Angle acc. DIN	63	90	112	140	180	250	315	400	500	630
	22	25	30	35	45	55	65	70	80	90
	18	20	22	26	30	36	42	44	50	56
	12	14	16	18	20	26	30	32	36	42
	30	35	40	45	50	60	70	70	80	100
	4	5	6	6	8	8	10	12	12	12
	26	30	32	36	42	50	60	60	70	80
	40	48	55	60	70	80	90	100	110	120
	50/60	63/73	72/87	80/95	100/120	125/145	140/170	150/185	160/195	170/210
	30x4	40×5	40x6	50x7	50x7	65×7	70x9	70×11	80×12	100x12

Available in pitch (p): 40-50-63-80-100-125-135-150-160-200-250 mm.
Other sizes and materials are available on request.

DIN 8167 - M - Double drag link chain (parameters in mm)									
Breaking load in kN	56	80	112	160	224	315	450	630	900
Inner width (b1)	24	28	32	37	43	48	56	66	78
Bush Ø (d2)	15	18	21	25	30	36	42	50	60
Pin Ø (d1)	10	12	15	18	21	25	30	36	44
Plate height (h)	30	35	40	50	60	70	80	100	120
Plate thickness (s)	4	5	6	7	8	10	12	14	16
Small roller (d3)	21	25	30	36	42	50	60	70	85
Large roller (d4)	42	50	60	70	85	100	120	140	170
A-symmetric (d5/d6)	42/50	50/60	60/70	70/85	85/100	100/120	120/140	140/170	170/210
Angle acc. DIN	40x4	40x4	50x6	50x6	60x8	70x9	70x9	100×12	120x15

Available in pitch (p): 40-50-63-80-100-125-135-150-160-200-250 mm.
Other sizes and materials are available on request.

Pins

Pins are available various executions and in materials:
$16 \mathrm{MnCr} 5,42 \mathrm{CrMo4i}, 1.4034 \mathrm{i}, 1.4122 \mathrm{i}, 1.4462,1.4713$. Other materials on request.

Circlips

Split pins

Circlip - revited

Split pin - head pin

Examples of double drag link chain with scrapers

Double drag link chain can be produced in various executions. Outer links can be bent in L-shape scrapers or provided with plastic flights. Internal and external links can be provided with welded scrapers. Of course, a combination is possible.

Sprockets

Sprockets for double drag link chain

Sprockets are with or without teeth (return sprockets) and wear-resistant due to the hardening on the teeth. These sprockets have a symetrical hub and are divisible, making them easy to (dis) assemble. The following versions are available ex stock. Different dimensions are possible on request.

Sprockets for double drag link chain available ex stock (parameters in mm)									
Pitch	Inner width		Bush Ø		Pitch \varnothing ($\mathrm{p} \times \mathrm{n}$)				
						6 teeth		eeth	7 teeth
63				18		126,00		4,63	x
80				18		160,00		9,05	x
100				18		200,00		1,31	x
125	$25 / 30$	$35 / 45$	$20 / 2$	/ 26 / 30		250,00		6,64	x
150				/ 30		x		x	345,71
160				30		320,00		8,10	x
Pitch diameter calculation									
$\mathrm{z}=$ number of teeth, $\mathrm{n}=$ conversion factor									
Pitch \varnothing (in mm) = Pitch of the chain $\times \mathrm{n}$									
z	n	z	n	z	n	z	n	z	n
6	2,0000	9	2,9238	12	3,8637	15	4,8097	18	5,7588
7	2,3048	10	3,2361	13	4,1786	16	5,1258	19	6,0755
8	2,6131	11	3,5495	14	4,4940	17	5,4422	20	6,3925

Sprockets from VAV are divisible, for quick (dis) assembly.

Sprockets for drop forged chain

Sprockets for drop forged chain consist of a body with symmetrical hub and interchangeable teeth segments. This has the advantage that, when the sprockets wear out, only the wear-resistant teeth segments need to be replaced. Sprockets can be made to your specifications on request. The following versions are available ex stock.

Sprockets for drop forged chain available ex stock (parameters in mm)					
Pitch	Pitch \varnothing / number of segments per complete set				
	6 teeth	7 teeth	8 teeth	9 teeth	10 teeth
102	Ø 204,00 / 4	\varnothing 235,09 / 4	Ø 265,49 / 4	Ø 298,23 / 4	$\emptyset 330,08 / 4$
125	$\emptyset 250,00 / 4$	Ø 288,10 / 4	Ø 326,64 / 4	Ø 365,48 / 4	$\emptyset 404,51 / 4$
142	$\varnothing 284,00 / 4$	Ø 327,28 / 4	Ø 371,06 / 8	\varnothing 415,18 / 6	\varnothing 459,52 / 4
150	Ø 300,00 / 6	Ø 345,71 / 4	Ø 391,97 / 8	Ø 438,57 / 4	$\emptyset 485,42$ / 10
160	Ø 320,00 / 4	Ø 368,76 / 4	\varnothing 418,10 / 8	\varnothing 467,81 / 4	$\emptyset 517,77 \quad 14$
200	$\emptyset 400,00 / 4$	$\emptyset 460,95$ / 4	$\varnothing 522,62$ / 8	Ø 584,76 / 4	$\emptyset 647,21 / 4$

VAV plastic flights

VAV plastic flights are made of flexible and durable Nylon. Because the chain runs on the plastic flights, there is no steel on steel contact. This is energy-saving, noise-reducing and cost-saving. In addition, they are easy to (dis)assemble and wear/guiding rails become unnecessary. There are several types available: the standard Nylon, heat resistant Zytel, Fiberglass reinforced, FDA quality and a detectable version.

Characteristics of VAV plastic flights					
Type	Standard	Fiberglass	FDA-quality	Zytel	Detectable
Colour	white	white	white	red	blue
Noise reducing	$\sqrt{ } \sqrt{ }$	\checkmark	$\sqrt{ }$	$\sqrt{ } \sqrt{ }$	$\sqrt{ }$
Flexible (will bend back)	$\sqrt{ }$		$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Detectable					$\sqrt{ }$,
FDA quality			$\sqrt{ }$		$\sqrt{ }$
Temperature resistance	$-20-+70{ }^{\circ} \mathrm{C}$	$-20-+70{ }^{\circ} \mathrm{C}$	$-20-+70^{\circ} \mathrm{C}$	$80-+110^{\circ} \mathrm{C}$	$-20-+70{ }^{\circ} \mathrm{C}$

$\sqrt{ }=$ suitable, $\sqrt{ } \sqrt{ }=$ very suitable

Plastic flights (parameters in mm)			
Length \times height	Cc. distance	Drop forged chain	Double drag link chain
	of the holes	pitch*	pitch/plates*
117×45	20	102125,160	$80,100,125 / 35 \times 5$
137×45	20	$102,125,160$	$80,100,125 / 35 \times 5$
180×45	20	$102,125,160$	$80,100,125 / 35 \times 5$
162×55	25	-	$125 / 40 \times 6,125 / 45 \times 6$
112×58	30	142,150	$125,150,160 / 50 \times 8,150 / 50 \times 6$
162×58	30	142,150	$125,150,160 / 50 \times 8,150 / 50 \times 6$
212×58	30	142,150	$125,150,160 / 50 \times 8,150 / 50 \times 6$
262×58	30	142,150	$125,150,160 / 50 \times 8,150 / 50 \times 6$
300×58	30		$150,160 / 50 \times 8,150 / 50 \times 6$

[^0]
Plastic profiles

Plastic profiles can be produced in various types of materials, such as: PE (polyethylene), Nylon or PU (polyurethane). These can be used as a scraper or as a flight. The profiles can be custom-made. Below a number of examples.

Profile A

Profile A - Plastic flight assembled on the steel scraper.

Profile C

Profiel C - Plastic scraper which can be pushed over the steel scrapers

Bridge-profile

The "bridge" profile is assembled on the steel scrapers. The plastic runs under the chain and ensures less residue.

"Half moon" profile

The so-called "half-moon" profile is assembled on the steel scrapers.

Accessories

VAV CirclipMaster

Circlips are an ideal way to secure the pin of a chain. The disadvantage is that they are difficult to disassemble. That is why VAV has developed the CirclipMaster. A hydraulic, hand-operated tool, applicable to circlips of various types of conveyor chain. The VAV CirclipMaster makes it possible to release circlips quickly, simple and safe from the pin.

Idler

VAV supplies idlers according to your specifications. The idlers can be made of plastic (for example PE1000 or Nylon) or steel (optional hardened). The idlers can be equipped with ball bearings. The axe can be fitted with internal or external thread.

Idler in plastic or steel (parameters in mm)			
Inner width chain	Roller \varnothing	Shaft \varnothing	Internal thread
25	$50 / 60$	20	$\mathrm{M} 10 \times 25$
30	$50 / 60$	20	$\mathrm{M} 10 \times 25$
35	$50 / 60$	20	M10×25
45	$60 / 70$	20	M10x25

Wear-guiding rails

Wear-guiding rails for drop forged chain are available in Manganese steel (X120Mn12). The rails are provided with a guiding groove, for the ideal guidance of the drop forged chain.

Wear-guiding rails from material X120Mn12 (1.3401)			
Size (mm)	Length (meter)	Delivery	Weight (kg/m)
35×10	$2,95-3,10$	Stock	2,60
50×10	$2,95-3,20$	Stock	3,75
50×20	$2,95-3,20$		7,67
60×10	$2,95-3,20$	Stock	4,54
70×10	$2,95-3,20$		5,32
70×20	$2,95-3,20$	Stock	10,81

Chain calculations

Conveyor chain calculations
Chain speed in $\mathrm{m} / \mathrm{sec}(\mathrm{v})$

Conveyor chain calculations
Material weight on the chain in kg (mass1) Mass $_{1}=\quad \frac{\text { tons per hour } \times \text { distance in meters }}{}$ Mass $_{1}$ $=$ $v \times 3,6$ v $=$ \quad material weight on the chain in kg

Conveyor chain calculations		
Power in Kw (P)		
		$P=\frac{\left(v \times \text { mass }_{1} \times \mu_{1}+\text { mass }_{2} \times \mu_{2}\right) \times 9,81}{1.000}$
P	$=$	power in Kw
v	$=$	chain speed in m per sec
mass $_{1}$	$=$	material weight on the chain in kg
μ_{1}	$=$	friction between steel and the product (for a smooth-running pro
mass $_{2}$	$=$	total chain weight in kg
μ_{2}	$=$	friction between the steel bottom and the chain (for steel scrapers approx. 0,25 and for plastic flights approx. 0,15)

[^0]: * VAV chain in stock

