

FOR OUR VERY FLEXIBLE LIGHTWEIGHTS

Frequency control up to 6A (optionally up to 10A)

Energy efficient

Applicable worldwide

A few simple steps to commissioning:

- 1. Connect the SFAE06/08 control unit and attach the acceleration sensor. Plug in the connector for the acceleration sensor, mains and magnet.
- 2. Set the desired acceleration, e.g. via the quick selection button +
- 3. Start device 'RUN'

SFA06/08-...-3

HIGHLIGHTS

- Very energy-efficient compared to the market alternatives
- Can be used worldwide: Multi-voltage input and independent of mains frequency
- Once mechanical basic tuning of the spring system has been completed, manual fine tuning is not necessary
- This means that other pots and troughs can be changed quickly without mechanical adjustment
- · Spring breakage detection
- Operation via display and buttons or via PC (RS485 interface)
- Continuous readjustment of the optimum output frequency and voltage
- Adjustable overload protection for the solenoid coils
- Covers a wide range of desired functions thanks to individually assignable inputs and outputs
- · Constant acceleration with mains voltage fluctuations

Additional options:

Master-slave operation, 10A version with heat sink, Sensor made of Stainless Steel

PARAMETERS	VALUE
Mains voltage	100/240VAC +-10%
Oscillation frequency	5-300Hz
Limit current	6/10 AAC mit Zusatzkühlkörper
Output power	1200/2000VA
Inputs	5 (freely configurable: analogue or digital)
Outputs	4 (digital) x 24V + potential-free NO contact
Power supply for external consumers	24 V, 100 mA
Ambient temperature	0 up to +40°C
Storage temperature	-10 up to +80°C
Humidity	max. 80%, non-condensing
Fieldbus interfaces	on request: Profinet, Ethernet IP
Interface	optional RS485
Protection class	IP54

TECHNICAL INFORMATION

AVITEQ

esc 🕒 🛨 🗲

Frequency Control (SFA) vs. Thyristor Control (SDE)

Frequency control offers maximum flexibility and efficiency for applications where operating conditions frequently change. It is particularly suitable when:

- External troughs are built, eliminating the need for complex mechanical tuning.
- Troughs are regularly changed, so mechanical tuning is not required.
- Energy savings are a priority the operation can be made more efficient.
- Integration into Profinet is required to enable a modern control solution with real-time monitoring.
- Operation at different mains frequencies (50 Hz / 60 Hz) is needed without changing the drive – reducing inventory costs and ensuring independence from the power supply.
- Advanced protection functions, such as spring break monitoring and impact protection, are required.
- Lower interference in adjacent systems is necessary.

- The start-stop process for conveying bulk materials is slower than with thyristor control.
- Higher investment costs.

When is thyristor control the better choice?

Thyristor control is a cost-effective solution for stable applications with fixed equipment (steel structures that need to be excited by vibrations). It is ideal when:

- The equipment (trough, screen, pipe, etc.) is fixed and unchangeable a one-time mechanical tuning is sufficient.
- Sufficient expertise is available for tuning, especially for self-built systems. Alternatively, the system can be delivered pre-tuned to customer specifications.
- A cost-effective solution is the main priority.

Disadvantages of thyristor control:

- The drive must be mechanically tuned to the specific equipment.
- Changes to the equipment require re-tuning.
- Separate drives are needed for different mains and vibration frequencies.

